期刊文献+

应用改进PSO算法求解待约束优化问题 被引量:9

Application of an Improved PSO Algorithm in Solving Constrained Optimization Problem
下载PDF
导出
摘要 为解决高维复杂CO问题,可将进化算法中保持物种多样性的思想引入基本PSO算法的方法。针对基本PSO算法在迭代后期粒子活性减弱的问题,引入‘吸引’和‘扩散’两个算子,对基本PSO算法的速度更新公式进行改进和考虑固定惩罚函数无法有效引导粒子向可行解方向搜索的缺点,提出LPFM方法替代固定惩罚函数法,以有效引导粒子进入可行解域,并在迭代后期加强对粒子的约束,使其不至因违背约束所获的收益大于所受的惩罚而收敛到不可行解域。最后对改进的PSO算法进行了试验,试验结果表明改进PSO算法对解决高维复杂CO问题是有效的。 By introducing the thought of keeping species diversity in Evolution Algorithm into basic Particle Swarm Optimization, an improved PSO algorithm was brought forward to solve multi - dimensional and complicated Constrained Optimization problem. In order to tackle the problem that the particles lacked activity in the anaphase of iteration, a velocity updating formula of basic PSO algorithm was improved by introducing the factors of ' attractive' and ' repulsive'. In vies of the defect of PSO algorithm that it lacked the ability to lead particles toward the direction of feasible domain, the Stationary Punishment Function Method was proposed to replace Leading Punishment Function Method. At the end, the improved PSO algorithm was tested by two CO problems and the results proved that the im- provement of PSO algorithm was effective to solve multi - dimensional and complicated CO problems.
出处 《计算机仿真》 CSCD 北大核心 2009年第10期212-215,338,共5页 Computer Simulation
关键词 粒子群优化算法 进化算法 带约束优化问题 惩罚函数法 PSO algorithm EA algorithm CO problem Punishment function method
  • 相关文献

参考文献10

  • 1X Hu, R C Eberhart. Sloving constrained nonlinear optimization problems with particle swarm optimization[ C]. Proceedings of the Sixth World Mutilconference on Systemics, Cybernetics and Informations. Orlando, Florida:2002. 被引量:1
  • 2巩敦卫,张勇,张建化,周勇.新型粒子群优化算法[J].控制理论与应用,2008,25(1):111-114. 被引量:36
  • 3M Clerc, J Kennedy. The particle swarm - explosion, stability and convergence in a multidimensional complex space[ J]. IEEE Trans on Evolutionary Computation, 2002,6 (1). 被引量:1
  • 4Sanaz Mostaghim, Jurgen Branke, Hartmut. Scbmeck. Multi - Objective Particle Swarm Optimization on Computer Grids [ J ]. Journal of Artificial Evolution and Applications, 2007, (4) :869. 被引量:1
  • 5J Kennedy, R C Eberhart. Particle swarm optimization [ C ]. Proceedings of IEEE internatioanal Conference on Neural Networks. 1995. 1942 - 1948. 被引量:1
  • 6陈琳,白振兴.应用PSO算法的无人机三维航迹规划[J].电光与控制,2008,15(4):50-53. 被引量:10
  • 7T Takahama, S Sakai. Tuning Fuzzy Control Rules by the constrained method which solves constrained nonlinear optimization problems[ J]. Electronics and Communications, 2000,83. 被引量:1
  • 8K E Parsopulos, V P Plagianakos. Improving the Particle Swarm Optimizer by Function " Stretching" [ C ]. ACM press, 2001. 被引量:1
  • 9Jacques Riget, Jakob S Vesterstr. A Diversity - Guided Particle Swarm Optimizer - the ARPSO[J]. ACM press, 2002. 被引量:1
  • 10罗亚中..空间最优交会路径规划策略研究[D].国防科学技术大学,2007:

二级参考文献22

  • 1唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 2冯琦,周德云.飞行器三维航迹规划算法[J].弹箭与制导学报,2004,24(4):85-87. 被引量:8
  • 3FAHLSTROMPG GLEASONTJ.无人机系统导论[M].北京:电子工业出版社,2003.. 被引量:15
  • 4楼顺天 胡昌华 张伟.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,2001.. 被引量:21
  • 5VESTERSTRM J, THOMSEN R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]//Proc of the 2004 Congress on Evolutionary Computation. Piscataway NJ: IEEE Press, 2004, 2: 1980- 1987. 被引量:1
  • 6HU X H, SHI Y, EBERHART R. Recent advances in particle swarm[C] # Proc of the 2004 Congress on Evolutionary Computation. Piscataway NJ: IEEE Press, 2004, 1 : 90 - 97. 被引量:1
  • 7XIE X F, ZHANG W J, YANG Z L. A dissipative particle swarm optimization[C]// Proc of the 2002 Congress on Evolutionary Computation. Piscataway NJ: IEEE Press, 2002:1456 - 1461. 被引量:1
  • 8CLERC M, KENNEDY J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58 - 73. 被引量:1
  • 9DAS S, KONAR A. Improving particle swarm optimization with differentially perturbed velocity[C]//Proc of Genetic and Evolutionary Computation. New York: ACM Press, 2005:177 - 184. 被引量:1
  • 10HE S, WU Q H, WEN J Y, et al. A particle swarm optimizer with passive congergation[J]. Biosystems, 2004, 78(1/3): 135 - 147. 被引量:1

共引文献44

同被引文献73

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部