摘要
Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work] was investigated. It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification, hydrophilieity and graft yield (GY) of the treated membrane. Results suggest that remote plasma treatment with a proper sample position, plasma power and graft polymerization leads to a membrane surface with not only less damage, but also more permanent hydrophilicity, than direct plasma treatment does. By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively, a possible mechanism was tentatively revealed.
Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work] was investigated. It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification, hydrophilieity and graft yield (GY) of the treated membrane. Results suggest that remote plasma treatment with a proper sample position, plasma power and graft polymerization leads to a membrane surface with not only less damage, but also more permanent hydrophilicity, than direct plasma treatment does. By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively, a possible mechanism was tentatively revealed.