期刊文献+

差分代换矩阵与多项式的非负性判定 被引量:19

DIFFERENCE SUBSTITUTION MATRICES AND DECISION ON NONNEGATIVITY OF POLYNOMIALS
原文传递
导出
摘要 主要分析了差分代换矩阵的基本性质,证明了存在有限个差分代换矩阵的乘积可以将单位点(1,0,…,0)变换到指定的非负(本原)整点.利用这一结果可以导出R^n+上判定半正定型的充要条件.根据此充要条件建立的算法(TSDS)可能不停机,针对不停机的情况,再给出一些判定半正定型的充分条件. Some essential properties of so-called difference substitution matrices are given, and it is proven that there are a finitely many difference substitution matrices whose product transforms the unit point (1, 0,..., 0) into a specified integral point with nonnegative components. A sufficient and necessary condition for the nonnegativity of a polynomial on R^n+ w is obtained by using this result. Since the procedure based on the above arguments sometimes may not terminate, some sufficient conditions for the nonnegativity of polynomials in nonterminating cases are proposed.
作者 杨路 姚勇
出处 《系统科学与数学》 CSCD 北大核心 2009年第9期1169-1177,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家重点基础研究发展规划项目(2004CB318003) 国家自然科学基金重点项目(90718041) 中国科学院知识创新工程重要方向(KJCX-YW-S02)资助项目
关键词 差分代换矩阵 差分代换集序列 终止性 半正定型 Difference substitution matrices, set sequence of difference substitution,termination, positive semidefinite form.
  • 相关文献

参考文献15

  • 1Yang Lu. Solving harder problems with lesser mathematics. Proceedings of the 10th Asian Technology Conference in Mathematics, Advanced Technology Council Mathematics Inc., Blacksburg, 2005. 被引量:1
  • 2杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7. 被引量:36
  • 3杨路,夏壁灿著..不等式机器证明与自动发现[M].北京:科学出版社,2008:226.
  • 4Yong Yao. Termination of the sequence of sds sets and machine decision for positive semi-definite forms, http://arxiv.org/abs/0904.4030v1. 被引量:1
  • 5徐嘉,姚勇.一类根式不等式的有理化算法与机器证明[J].计算机学报,2008,31(1):24-31. 被引量:12
  • 6Polya G, Szego G. Problems and Theorems in Analysis. Berlin, Springer-Verlag, 1972. 被引量:1
  • 7Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge Univercity Press, Cambridge, 1952. 被引量:1
  • 8Catlin D W, D'Angelo J P. Positivity conditions for bihomogeneous polynomials. Math. Res. Lett., 1997, 4: 555-567. 被引量:1
  • 9Handelman D. Deciding eventual positivity of polynomials. Ergod. Th. and Dynam. Sys., 1986, 6: 57-79. 被引量:1
  • 10Habicht W. Uber die zerlegung strikte definter formen in qu~drate. Coment. Math. Helv., 1940, 12: 317-322. 被引量:1

二级参考文献12

  • 1杨路,侯晓荣,夏壁灿.A complete algorithm for automated discovering of a class of inequality-type theorems[J].Science in China(Series F),2001,44(1):33-49. 被引量:24
  • 2Buchberger B, Collins G E, Kutzler B. Algebraic method for geometric reasoning. Annual Review of Computer Science, 1988, 3:85-119 被引量:1
  • 3Wu W-T. Basic principles of mechanical theorem proving in elementary geometries. Journal of Systems Science and Mathematical Science, 1984, 4(3): 207-235 被引量:1
  • 4Yang L, Zhang J. A Practical program of automated proving for a class of geometric inequalities//Richter-Gebert J, Wand D eds. Proceedings of the Automated Deduction in Geometry. LNAI 2061. Berlin: Springer-Verlag, 2001:41-57 被引量:1
  • 5Cox D, Little J, O'Shea D, Using algebraic geometry. New York: Springer-Verlag, 1998: 71-76 被引量:1
  • 6Yang L, Solving harder problems with lesser mathematics// Proceedings of the 10th Asian Technology Conference in Mathematics. ATCM Inc, 2005: 37-46 被引量:1
  • 7Bottema O et al, Geometric Inequalities. Groningen, Netherland: Wolters-Noordhoff Publishing, 1969 被引量:1
  • 8刘保乾.BOTTEMA,我们看见了什么,拉萨:西藏人民出版社,2003 被引量:1
  • 9Collins G E, Hong H . Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 1991, 12(3): 299-328 被引量:1
  • 10Yang L, Xia S H. An inequality-proving program applied to global optimization//Yang W C et al eds. Proceedings of the Asian Technology conference in Mathematics. Blacksburg: ATCM, Inc., 2000:41-57 被引量:1

共引文献41

同被引文献135

引证文献19

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部