期刊文献+

SAR图像目标鉴别研究综述 被引量:5

Study on Target Discrimination in SAR Images:A Survey
下载PDF
导出
摘要 SAR图像目标鉴别是SAR ATR研究领域的一项关键技术,旨在去除目标检测后的杂波虚警,以减小目标分类或识别的代价。本文在广泛文献调查的基础上,从SAR图像目标鉴别技术发展的历史沿革、研究现状开始,对SAR图像目标鉴别算法的流派、国内外的实际系统以及目标鉴别达到的性能指标等进行了较为全面的综述。给出了该方面研究的主要结论、展望了需要进一步解决的问题。 Target Discrimination,as a key technology in SAR ATR,is used to reject clutter false alarm after detection processing and reduce the computational cost of classification stage. Based on the extensive investigation of published literatures, this paper begins from the development and current study of the technologies of target discrimination, the discrimination algorithms, the actual systems and the performance of discrimination are reviewed in detail. Some primary summaries are given, and some problems need to be resolved are also indicated.
作者 高贵
出处 《信号处理》 CSCD 北大核心 2009年第9期1421-1432,共12页 Journal of Signal Processing
基金 国家自然科学基金项目(No.40801179)
关键词 合成孔径雷达 鉴别 特征提取 特征选择 Synthetic Aperture Radar Discrimination Feature Extraction Feature Selection
  • 相关文献

参考文献66

  • 1D. E. Dudgeon, et al. An overview of automatic target recognition. Lincoln Laboratory Journal, 1993,6( 1 ) :3-10. 被引量:1
  • 2L. M. Novak, et al. Radar Target Identification Using Spatial Matched Filters. Pattern Recognition, 1994, 27 (4) : 607-617. 被引量:1
  • 3T. D. Ross,et al. SAR ATR:so what' s the problem? An MSTAR perspective. Proc. SPIE Conf. on SAR, 1999, 3721:662-672. 被引量:1
  • 4B. Bhanu, et al. Introduction to The Special Issue on Automatic Target Detection and Recognition. IEEE Transactions on Image Processing, 1997,6( 1 ) : 1-6. 被引量:1
  • 5G. J. Owirka, et al. A New SAR ATR Algorithm Suite. SPIE, 1994,2230 : 336 -343. 被引量:1
  • 6L. M. Novak, et al. An Efficient Multi-Target SAR ATR Algorithm. IEEE, 1998,3-13. 被引量:1
  • 7J. C. Principe, et al. Target Prescreening Based on A Quadratic Gamma Discriminator. IEEE Trans. AES, 1998,34 (3) :706-715. 被引量:1
  • 8J. C. Principe, et al. Target Discrimination in Synthetic Aperture Radar Using Artificial Neural Networks. IEEE Trans. Image Processing, 1998,7 ( 8 ) : 1136-1149. 被引量:1
  • 9M. Kim, et al. Artificial Neural Networks with Gamma Kernels for Automatic Target Detection. IEEE, 1996, 1594- 1599. 被引量:1
  • 10M.Kim, et al. A New CFAR Stencil for Target Detections in Synthetic Aperture Radar (SAR) Imagery. SPIE, 1996, 2757:432-438. 被引量:1

同被引文献42

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部