期刊文献+

基于EM和Mean-shift的肺结节分割 被引量:2

Pulmonary Nodule Segmentation Based on EM and Mean-shift
下载PDF
导出
摘要 针对结节与血管相连且两者CT值相近造成分割困难的问题,提出了一种基于期望最大(estimationmaximum,EM)的自适应带宽参数选择的方法,并采用均值漂移(Mean-shift)算法解决结节分割。与基于统计分析规则的带宽选择方法和基于最优化的带宽选择方法相比,该方法能直接求得正确带宽参数,且时间复杂度低。应用血管梯度的法向量方向服从正态分布,而结节梯度的法向量方向服从均匀分布,建立血管粘连型结节模型,并用期望最大估计模型参数,根据均匀分布的权重和带宽选择定理确定带宽参数。该方法对仿真数据和CT数据(19个粘连血管性肺结节)进行评估实验,都取得了正确的分割结果。结果表明,该方法对分割粘连血管型结节是有效的。 Aiming at solving the segmentation problem caused by the connection of lung nodule and vessel, a new adaptive bandwidth selection method based on EM is proposed and we apply it into nodule segmentation. Compared it to the method of bandwidth chosen based on statistical analysis rule or optimized rule, it has some advantages such as low time complexity and correct bandwidth in accord with a real problem. The vertical orientation vectors of vessel's gradient was constructed as to normal distribution and the vertical orientation vectors of nodule's gradient as uniform distribution, we modeled the nodule connected vessel, estimated model parameters by EM, and extracted bandwidth values in Mean-shift based on the weight of uniform distribution and bandwidth selection theorem. The proposed method was tested on synthetic data and the clinical chest CT volumes, and all the results were correct. The results revealed that the proposed method is successful in segmentation lung nodules connected vessel.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第10期2016-2022,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60671050 60771067)
关键词 肺结节 期望最大 均值漂移 梯度法向方向分布特征 lung nodule, EM, Mean-shift, vertical orientation vectors of gradient's distribution feature
  • 相关文献

参考文献10

  • 1Kostis W J,Reeves A P, Yankelewitz D F, et al. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [ J ]. IEEE Transactions on Medical Imaging, 2003, 22(10) : 1259-1274. 被引量:1
  • 2Ning X, Narendra A, Ravi B. Automated lung nodule segmentation using dynamic programming and EM based classification [ J ]. SPIE Medical Imaging, 2002,4684 ( 5 ) : 666-676. 被引量:1
  • 3Okada K, Comaniciu D, Krishnan A. Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in muhislice CT [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,2S(2) :281-288. 被引量:1
  • 4Sun Shen-shen, Li Hong, Hou Xin-ran, et al. Automatic segmentation of pulmonary nodules in CT images[ A ]. In:Proceedings of the IEEE International Conference on 1st Bioinformatic and Biomedical Engineering[ C ] , Wuhan,2007 : 790-793. 被引量:1
  • 5Li Q, Sone S, Doi K. Selective enhancement fihers for nodules, vessels, and airway walls in two-and three-dimensional CT scans [ J ]. Medical Physics, 2003,30 ( 8 ) : 2040- 2051. 被引量:1
  • 6Gady A, Samuel G, Armato I I I,et al. Vessel tree reconstruction in thoracic CT scans with application to nodule detection [ J ]. IEEE Transactions on Medical Imaging,2005,24 (4) :486-499. 被引量:1
  • 7Gady A, Changhua W. Probabilistic modeling based vessel enhancement in thoracic CT scans[A]. In:Proceedings of International Conference on Computer Vision and Pattern Recognition [ C ], San Diego, CA, USA,2005,2:684-689. 被引量:1
  • 8.lun Z, James W M, Fellow, et al. Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation [ J ]. IEEE Transactions on Image Processing, 1994,3 (4) :404-420. 被引量:1
  • 9Comaniciu D. An algorithm for data-driven bandwidth selection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 281-288. 被引量:1
  • 10Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis [ J ]. IEEE Transactions on Paftern Analysis and Machine Intelligence, 2002,24 ( 5 ) :603-619. 被引量:1

同被引文献15

  • 1Vincent L,Soille RWatersheds in digital spaces:an effi- cient algorithm based on immersion simulations[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 199l, 13(6) :583-598. 被引量:1
  • 2Bezdek J C.Pattern recognition with fuzzy objective func- tion algorithms[M].New York:Plenum Press, 1981. 被引量:1
  • 3Cheng Y.Mean shift, mode seeking, and clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1995,17 (8) : 790-799. 被引量:1
  • 4He X, Yung N H C.Watershed segmentation with boundary curvature ratio based merging criterion[C]//SIP' 07 Pro- ceedings of the 9th IASTED International Conferenceon Signal and Image Processing,2007:7-12. 被引量:1
  • 5Tu Z, Zhu S C.Image segmentation by data-driven Markov chain Monte Carlo[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):657-673. 被引量:1
  • 6Deng Y, Manjunath B S.Unsupervised segmentation of color-texture regions in images and video[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23 (8):800-810. 被引量:1
  • 7Kang H, Lee S.Coherent line drawing[C]//Proc ACM Symposium on Non-photorealistic Animation and Ren- dering, 2007: 43-50. 被引量:1
  • 8郭丽,高立群,片兆宇.基于滑降的随机游走图像分割算法[J].计算机辅助设计与图形学学报,2009,21(8):1149-1154. 被引量:11
  • 9张向荣,骞晓雪,焦李成.基于免疫谱聚类的图像分割[J].软件学报,2010,21(9):2196-2205. 被引量:32
  • 10褚晶辉,吴泽蕤,吕卫,李喆.基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统[J].激光与光电子学进展,2018,55(8):196-202. 被引量:25

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部