期刊文献+

压电层合圆杆中的几何非线性波 被引量:1

Geometrically Nonlinear Waves in Layered Piezoelectric rod
下载PDF
导出
摘要 利用有限变形理论,导出了描述压电层合杆中几何非线性波的传播方程。在端部作用有限振幅位移函数的边界条件下,用逐步近似法对位移函数进行了假设,推导出了一维压电杆中位移函数与电势函数之间的关系式,并应用变动参数法求解了变换得到的非齐次波动方程,得到了位移和电势的响应。数值分析表明:初始频率的改变对位移和电势的非线性特性影响不大;而初始振幅的增加会使非线性波形畸变特性明显增强。 The nonlinear equation of wave propagation in layered piezoelectric rod was derived according to finite deformation theory. Considering the boundary condition of finite displacement function acting on the end of the rod, the approximation is used to describe the displacement function step by step and the relation between displacement and electric displacement in one dimensional rod is obtained. The transformed inhomogeneous wave equation is solved parameter perturbation method, and the responses of displacement and electric potential are obtained. The numerical results show that the effects of initial frequency on the nonlinear characteristics of displacement and electric potential are not significant and aberration characteristics of nonlinear wave shape become more obvious with increasing initial amplitude.
机构地区 湖南大学
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第3期519-523,共5页 Chinese Journal of Applied Mechanics
基金 高等学校博士学科点专项科研基金(20050532002) 湖南省自然科学基金(06JJ2058)
关键词 有限变形 压电层合杆 非线性波 finite deformation, layered piezoelectric rod, nonlinear wave.
  • 相关文献

参考文献11

二级参考文献16

  • 1郭建刚,周丽军,张善元.有限变形弹性杆中的几何非线性波[J].应用数学和力学,2005,26(5):614-620. 被引量:14
  • 2朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253. 被引量:20
  • 3Lee J Y, Symonds P S. Extended energy approach to chaotic elastic-plastic response to impulsive loading [ J].Int J Mech Sci,1992,34:139 - 157. 被引量:1
  • 4Paniela Dinca Baran. Mathematical models used in studying the chaotic vibration of buckled beam [J]. Mechanics Research Communications, 1994,21:189 - 196. 被引量:1
  • 5Keragiozov V,Keoagiozova D. Chaotic phenomena in the dynamic buckling of an elastic-plastic column under an impact [ J]. Nonlinear Dynamics, 1995,13: 1 - 16. 被引量:1
  • 6Zhuang Wei, Yang Guitong. The propagation of solitary wave in a nonlinear elastic rod [J]. Appl Math Mech,1986,7:615 -626. 被引量:1
  • 7KazuhiroFukushima ,Tomoji Yamada. Chaosfor pinned sineGordon soliton [J]. Journal of the Physical Society of Japan, 1986,55:2581 -2585. 被引量:1
  • 8ZHANG Shan-yuan,ZHUANG Wei. The strain solitary waves in a nonlinear elastic rod[ J ].Acta Mechanica Cinia, 1987,1 (3) :62-72. 被引量:1
  • 9ZHANG Shan-yuan,GUO Jian-gang, ZHANG Nian-mei. The dynamics behaviors and wave properties of finite deformation elastic rods with viscous or geometrical-disporsive effects[A]. In:ICNM-Ⅳ[ C],Shanghai, Aug 2002,728-732. 被引量:1
  • 10Whitam G B. Linear and Nonlinear Waves[M].New York: John Wiley & Sons, 1974, 96-113. 被引量:1

共引文献18

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部