摘要
最优潮流无解时,以往只能凭借经验和反复调试才能恢复其可行性。文中提出了一种最优潮流的扩展模型来恢复最优潮流的可行性。在等式约束和不等式约束中加入松弛变量,并在目标函数中加入相应的惩罚项,采用改进的原对偶内点法来求解。算例仿真的结果表明:当原问题可行时,该模型可以收敛到原问题的最优解;当前约束或者控制变量越界导致原问题无解时,可以自动到更大的可行域内寻优,快速得到近似解,并且可以明确指出导致原问题无解的关键约束,从计算结果中可以方便地得到调整的措施,即调整有功、无功补偿量或者安全约束指标。改进的算法在各种情况下都有很好的收敛性。与其他模型和方法的比较说明了该模型和算法的优越性。该方法可以在多个方面得到实际应用。
Generally,unsolvable OPF problem can only be restored by experience and repeated debugging.In this paper,an extended optimal power flow(EOPF) model is presented to solve this problem.It is realized through adding slack variables to equality constraints and inequality constraints,introducing corresponding penalty items to the objective function.The extended model is solved by improved primal-dual interior point method.Test results of examples show that: if the original problem is solvable,optimal solution of original problem can be obtained; if the original problem is unsolvable due to the violations of constraints or control variables, the unsolvable OPF can search for optimum in an expanded region and get an approximate solution. The approximate solution can reflect the key constraints that lead to the insolvability of original problem and provide adjustive measures clearly. The adjustive measures include active power supplement, reactive power compensation, adjusting security constraints indices and so on. The improved algorithm has a good convergence property under various conditions. The proposed method has an advantage over other methods and can be applied in several aspects.
出处
《电力系统自动化》
EI
CSCD
北大核心
2009年第19期36-41,95,共7页
Automation of Electric Power Systems
基金
国家重点基础研究发展计划(973计划)资助项目(2004CB217905)~~
关键词
最优潮流
原对偶内点法
松弛变量
惩罚项
optimal power flow(OPF)
primal-dual interior method
slack variables
penalty item