期刊文献+

基于分段氨基酸组成成分的蛋白质相互作用预测 被引量:2

PREDICTING PROTEIN-PROTEIN INTERACTION BASED ON THE SEQUENCE-SEGMENTED AMINO ACID COMPOSITION
原文传递
导出
摘要 蛋白质相互作用研究有助于揭示生命过程的许多本质问题,也有助于疾病预防、诊断,对药物研制具有重要的参考价值。文章首先构建出蛋白质作用数据库,提出分段氨基酸组成成分特征提取方法来预测蛋白质相互作用。10CV检验下,基于支持向量机的3段氨基酸组成成分特征提取方法的预测总精度为86.2%,比传统的氨基酸组成成分方法提高2.31个百分点;采用Guo的数据库和检验方法,3段氨基酸组成成分特征提取方法的预测总精度为90.11%,比Guo的自相关函数特征提取方法提高2.75个百分点,从而表明分段氨基酸组成成分特征提取方法可有效地应用于蛋白质相互作用预测。 The research on protein-protein interaction (PPI) can help us to reveal many essential problems of life processes, and also administer to prevention and diagnosis of human's diseases. It has important reference value for drug development. A dataset of protein-protein interactions was constructed firstly, and then the feature extracting method of sequence-segmented amino acid composition (SAAC) was proposed to predict protein-protein interaction in this paper. Based on the support vector machine (SVM), the prediction accuracy of 3 segments SAAC is 86.2% in 10-fold cross-validation (10CV) test, which is 2.31% higher than that of common amino acid composition (AAC) method. Using Guo's database and test method, the prediction accuracy of 3 segments SAAC is 90.11%, which is 2.75% higher than that of Guo's approach. The results show that the SAAC method can predict protein-protein interaction effectively.
出处 《生物物理学报》 CAS CSCD 北大核心 2009年第4期282-286,共5页 Acta Biophysica Sinica
基金 国家自然科学基金项目(60775012 60634030) 西北工业大学科技创新项目(KC02)~~
关键词 分段氨基酸组成成分 蛋白质相互作用 支持向量机 IOCV检验 Sequence-segmented amino acid composition Protein-protein interaction Support vector machine 10CV test
  • 相关文献

参考文献2

二级参考文献24

共引文献4

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部