期刊文献+

基于子带能量的GMM含噪语音分类算法 被引量:2

Band energy based GMM speech with noise classification algorithm
下载PDF
导出
摘要 语音分类是语音信号处理的重要组成部分。准确快速地对语音进行分类在语音编码、语音合成中有着重要的意义。针对当前一些常用分类特征和分类算法的不足,本文提出一种利用语音的Mel频率子带能量作为分类特征,建立高斯混合模型(GMM),运用最大后验概率准则对清音、浊辅音、元音分类的算法。仿真实验表明,在噪音环境下该算法仍可准确进行语音信号分类。 Speech classification is an important research topic in speech signal processing area. Rapid and precise speech classification is meaningful for speech coding and speech synthesis. Aiming at the deficiency of currently available classification features and classification algorithms, this paper proposes a novel algorithm through using the energy distribution within each frequency band in Mel-frequency scale as the classification feature and creating Gaussian mixture model and classifying the speech signal into voiced consonant, vowel and voiceless parts with the maximum a posterior probability. Simulation shows that the proposed algorithm is able to provide accu- rate classification result even in noisy environment.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第9期1950-1955,共6页 Chinese Journal of Scientific Instrument
关键词 语音分类 能量分布 高斯混合模型 最大后验概率 speech classification energy distribution Gaussian mixture model maximum a posterior probability
  • 相关文献

参考文献11

  • 1ATAL B, RABINER L. A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition[J]. IEEE Transactions on A coustic, Speech and Signal Processing, 1976,24(3):201-212. 被引量:1
  • 2QI Y, HUNT B R. Voiced-unvoiced-silence classification of speech using hybrid features and a network classifier[J]. IEEE Transactions on Speech and Audio Processing, 1993,1(2):250-255. 被引量:1
  • 3AHN R, HOLMES W H. Voiced/unvoiced/silence classification of speech using 2-Stage neural networks with delayed decision input[A]. B Boashash, et al. Proc ISSPA96[C]. Brisbane, Australia: Queensland University of Technology, 1996:389-390. 被引量:1
  • 4齐峰岩,鲍长春.一种基于支持向量机的含噪语音的清/浊/静音分类的新方法[J].电子学报,2006,34(4):605-611. 被引量:12
  • 5REYNOLDS D, ROSE R C. Robust text-independent speaker identification using gaussian mixture speaker models[J]. IEEE Transactions on Speech and Audio Processing January, 1995,3(1):72-83. 被引量:1
  • 6SHAH J K, IYER A N, BRETT Y. Robust voiced/ unvoiced classification using novel features and gaussian mixture[J]. Model IEEE International Conference on Acoustics, Speech, & Signal Processing (ICASSP), Montreal, Canada, 2004:17-21. 被引量:1
  • 7ALUIN F M, PRZYBOCKI M A. NIST 2003 language recognition evaluation[C]. Proc. Eurospeech 03, September 2003:1341-1344. 被引量:1
  • 8吴宗济,林茂灿.实验语言学概要[M].北京:高等教育出版社,1989. 被引量:3
  • 9钱博,李燕萍,唐振民,徐利敏.基于频域能量分布分析的自适应元音帧提取算法[J].电子学报,2007,35(2):279-282. 被引量:7
  • 10陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22

二级参考文献38

共引文献40

同被引文献27

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部