期刊文献+

基于PCA与LBP的人脸性别分类方法 被引量:2

Gender Classification Based on PCA and LBP
下载PDF
导出
摘要 主成分分析方法(PCA)和局部二元模式算子(LBP)相融合的特征提取方法结合了PCA在提取全局特征方面的优势和LBP在提取局部纹理细节方面的优势,能够从人脸图像中提取出较好的用于支持向量机(SVM)进行人脸性别识别分类的特征。在提取图像的LBP特征时,对传统的LBP方法做了改进,采用级联的方法提取图像的LBP直方图特征。并将提取出来的LBP特征与PCA特征相结合用于SVM,实验结果表明,LBP和PCA相融合的特征较单独的PCA特征和LBP特征在性别识别上具有明显的优势。 The method which combined the characteristic of principal components analysis (PCA) with local binary pattern (LBP)'s combines the advantage in global features of PCA with the advantage in Details of local texture of LBP and could extract better characteristics from face image for support vector machine (SVM) to gender classification.Using Cascade method rather than traditional LBP method to extract LBP histogram characteristics of images and combine the features of LBP and PCA from extraction for SVM. The experimental results show that the characteristics combined PCA with LBP has obvious advantages than the PCA and LBP separately in Gender identification.
作者 李昆仑 王命延 LI Kun-lun, WANG Ming-yan (Department of Computer, Nanchang University, Nanchang 330031, China)
出处 《电脑知识与技术》 2009年第10期8023-8025,共3页 Computer Knowledge and Technology
关键词 纹理 性别分类 主成分分析 局部二元模式 支持向量机 texture gender classification principal components analysis local binary pattern support vector machine
  • 相关文献

参考文献8

  • 1BRUNELLI R,POGGIO T.HyberBF networks for gender classification[].ProcDARPA Image Understanding Workshop.1995 被引量:1
  • 2LIAN H C,LU B L.Gender Recognition Using a Min-Max Modular Support Vector Machine with Equal Clustering[].Proceeding ofInternational Symbosium on Neural Network.2005 被引量:1
  • 3LIAN H C,LU B L.Multi-view Gender Classification Using Local Binary Patterns and Support Vector Machine[].Proceedings of Inter-national Symposium on Neural Networks.2006 被引量:1
  • 4Golomb,B.,Lawrence,D.,Sejnowski,T.Sexnet: a neural network identifies sex from human faces[].Advances in Neural Information Processing Systems.1991 被引量:1
  • 5Gutta S,Wechsler H,Phillips P J.Gender and ethnic classification[].Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition.1998 被引量:1
  • 6Baback Moghaddam,Ming-Hsuan Yang."Gender Classification with Support Vector Machines"[].IEEE Transactions Pattern Analysis and Machine Intelligence.2002 被引量:1
  • 7Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[].Pattern Recognition.1996 被引量:1
  • 8Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2002 被引量:1

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部