摘要
In order to study the effects of lateral flow on the underwater missile vertical launching process considering the hydrodynamic effect, a horizontal fluid dynamics model was developed. We offered the numerical computation method in this process by using the fluent of CFD ( Computational Fluid Dynamics)software. Based on the specific examples, we carried out the computation of the model's drag coefficient, lift coefficient and pitching moment with its launching process. The computation results agree with the results of the experiment and the error between them is less than 10%. It shows that this computation method is viable and can be used in the system design, and the analysis of missile motion and basic structure intensity.
In order to study the effects of lateral flow on the underwater missile vertical launching process considering the hydrodynamic effect, a horizontal fluid dynamics model was developed. We offered the numerical computation method in this process by using the fluent of CFD ( Computational Fluid Dynamics)software. Based on the specific examples, we carried out the computation of the model's drag coefficient, lift coefficient and pitching moment with its launching process. The computation results agree with the results of the experiment and the error between them is less than 10%. It shows that this computation method is viable and can be used in the system design, and the analysis of missile motion and basic structure intensity.