期刊文献+

湿法烟气脱硫中pH值的PID神经网络控制 被引量:2

PID Neural Network Control of pH Value in the Process of Wet Flue Gas Desulfurization
下载PDF
导出
摘要 针对石灰石-石膏湿法烟气脱硫工艺中吸收塔浆液pH值变化过程具有高度非线性、时滞性以及各种不确定性、常规PID控制器难以达到满意的控制效果,提出一种基于改进PID神经网络及BP神经网络辨识器所组成的内模控制方案,通过对浆液pH值变化过程进行辨识和控制,仿真结果表明,在改进PID-NNC的控制下,吸收塔浆液pH值很好地跟踪了系统的设定输入及其变化,具有较强的抗干扰能力,稳态精度高,调整时间短,满足实时控制。 Conventional PID control can't achieve satisfactory control effect because of the high nonlinearity, time delay and uncertainties in the process of limestone - gypsum wet flue gas desulfurization.In this paper, we proposed a kind of internal model control scheme aimed at improving PID neural network and BP network control identifier. Through identifying and controling the pH value of serosity, we found out from the results that under the internal model control of PID-NN, the serosity pH value of absorption column tracked the setting and change of system with strong anti-interference ability, stable and high precision, short time adjustment and real-time control.
出处 《太原科技》 2009年第5期72-74,共3页 Taiyuan Science and Technology
关键词 PID BP神经网络 LM算法 湿法烟气脱硫 PH值 PID BP neural network LM algorithm wet flue gas desulfurization pH value
  • 相关文献

参考文献8

二级参考文献20

共引文献78

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部