期刊文献+

二级倒立摆系统的实时稳定控制实验研究 被引量:5

Real-time Equilibrium Control Experiment of Double-link Inverted Pendulum
下载PDF
导出
摘要 为实现二级倒立摆系统的实时稳定控制,以深圳固高直线二级倒立摆装置作为控制对象,在MATLAB环境下,利用基于二次型最优控制理论的线性二次型(Linear Quadratic Regulator,LQR)最优控制器,成功实现了该装置的实时稳定控制。为引入新的控制策略,采集二级倒立摆实时控制过程中的LQR控制器数据作为样本,经过自适应神经模糊推理系统(Adaptive Neuro-Fuzzy Inference System,ANFIS)工具箱训练并生成出一种新型模糊神经网络控制器,应用到装置上同样实现了实时平衡。结果表明,新型控制器较LQR控制器控制效果更优,也为成功实现装置的实时平衡提供了一种新的思路和解决方法。 To realize real - time equilibrium control of double - link inverted pendulum system, a linear double - link inverted pendulum device of Googol Tech is taken as the controlling object. In the environment of MATLAB, a linear quadratic regulator (LQR) controller based on quadratic optimal control theory was applied to the device. And real -time equilibrium control of the system succeeded. In order to introduce new control strategy, the data of the LQR controller were collected during the real - time controlling experiment of the LQR controller and trained in adaptive neuro- fuzzy inference system (ANFIS) toolbox of MATLAB as a sample. A new fuzzy- neural -network controller was generated and the real - time balance of the device was also achieved by using it. Compared with the LQR controller, a better controlling effect was gained, and it also provides a new thought and solution for realization of the experiment.
作者 胡阳 王吉芳
出处 《计算机仿真》 CSCD 北大核心 2009年第9期342-345,共4页 Computer Simulation
基金 北京市教委科技计划面上项目(KM200611232012)
关键词 二级倒立摆 线性二次型 模糊神经网络 自适应神经模糊推理系统 实时稳定控制关键词: Double - link inverted pendulum Linear quadratic regulator (LQR) Fuzzy - neural - network A- daptive neuro- fuzzy inference system Real -time equilibrium control
  • 相关文献

参考文献5

二级参考文献13

  • 1李传翘,周其节,毛宗源,苏树珊,杨同辉.自适应模糊神经网络的优化辨识及仿真[J].华南理工大学学报(自然科学版),1997,25(9):102-105. 被引量:3
  • 2胡寿松.自动控制原理[M].北京:国防工业出版社,1998.. 被引量:7
  • 3吴寿章.应用最优控制[M].西安:西安交通大学出版社,1988.. 被引量:1
  • 4B.D.O.安德森 J.B.莫尔.线性最优控制[M].北京:科学出版社,1982.. 被引量:1
  • 5徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1995.88-122. 被引量:6
  • 6Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans on SMC,1985,15(1):116-132. 被引量:1
  • 7Hirasawa K, Murata J, Hu Jing-lu. Universal learning network and its application to robust control [J]. IEEE Trans on SMC ,2000,30 (3) :419 - 430. 被引量:1
  • 8Chang W,Ramakrishna R S.Elitism-based compact genetic algorithms [J]. IEEE Trans on EC, 2003,7 (4):367 - 385. 被引量:1
  • 9Kalyanmoy D. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on EC,2002,6(2):182 - 196. 被引量:1
  • 10周志坚,毛宗源.一种基于遗传算法的模糊神经网络结构和参数优化[J].华南理工大学学报(自然科学版),1999,27(1):26-32. 被引量:6

共引文献57

同被引文献31

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部