期刊文献+

有限型条件的刻画

Characterization of the Finite Type Condition
下载PDF
导出
摘要 若自相似迭代函数系{φj}jm=1(满足φj(x)=ρjRjx+bj,bj∈Rd,其中0<ρj<1,Rj为d×d正交矩阵)关于不变开集Ω满足有限型条件,K是迭代函数系{φj}jm=1生成的自相似集.但是,Ω与K的交集可能为空集.本文用构造方法证明存在一个不变开集U,使得U∩K≠φ,且迭代函数系{φj}jm=1关于不变开集U也满足有限型条件. If self-similar IFS {φj}^mj=1( which satisfies: φj(x)=ρjRjx+bj,bj∈R^d , where 0 〈 ρj 〈 1 , and Rj are orthonormal d×d matrices) satisfies finite type condition with respect to the invariant open set Ω. The invariant set K is generated by IFS {φj}^mj=1. Since the intersection of Ω and K may be empty. We prove that there exists an invariant open set U such that U∩K≠φ, and IFS {φj}^mj=1 also satisfies finite type condition with respect to the invariant open set U by a constructive method.
作者 王飞 邓起荣
出处 《山西师范大学学报(自然科学版)》 2009年第3期20-23,共4页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 迭代函数系 自相似集 不变开集 有限型条件 iterated function systems self-similar sets invariant open set finite type condition
  • 相关文献

参考文献10

  • 1Hutchinsion J E. Fractal and self similarity [ J ]. Indian Univ Math, 1981,30:713 - 747. 被引量:1
  • 2Ngai S M. Hausdorff dimension of self-similar sets with overlaps [ J ]. London Math Soc. 2001,63 (2) :655 -672. 被引量:1
  • 3Schief A. Sepration properties for self-similar sets[ J]. Proc Amer Math Soc. 1994,122 : 111 - 115. 被引量:1
  • 4Bandt C, Graf S. Self-similar sets 7 : A characterization of self-similar fractals with positive Hausdorff measure [ J ]. Proc Amer Math Soc. 1992, 114:995 - 1001. 被引量:1
  • 5邓起荣.Iteration Function systems with overlaps and self-affine measures[ D].香港:香港中文大学博士论文,2005.1-90. 被引量:1
  • 6Lau K S, Ngai S M. Dimensions of the boundaries of self-similar sets [ J ]. Experiment Math. 2003,12 : 13 - 26. 被引量:1
  • 7Nguyen N. Iterated function systems of finite type and the weak separation property[ J]. Proc Amer Math Soc. 2002,130:483 -487. 被引量:1
  • 8Ngai S M, Wang Y. Hausdorff dimension of self-similar sets with overlaps [ J ]. London Math Soc. 2001,63 (2) : 655 -672. 被引量:1
  • 9肯尼思法尔科内.分形几何-数学基础及其应用[M].沈阳:东北大学出版社,2001.1-148. 被引量:1
  • 10文志英编著..分形几何的数学基础[M].上海:上海科技教育出版社,2000:358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部