摘要
This paper demonstrates an approach that negative uniaxial crystal has a relative anomalous dispersion effect which can compensate group velocity delay, and applies this approach to nonlinear frequency conversion of an ultrafast laser field. High efficiency of the third harmonic generation is experimentally fulfilled by adopting a collinear configuration of doubing-compensation-tripling system. Through finely adjusting the incident angle and optical axis direction of the compensation plate, it obtains ultraviolet (UV) output energy of 0.32 mJ centered at 270 nm with spectral bandwidth of 2 nm when input beam at 800 nm was 70 fs pulse duration and 6 mJ pulse energy which was extracted from Ti:sapphire laser system by a diaphragm, corresponding to an 800-to-270 nm conversion efficiency of 5.3% and a factor-of-l.6 improvement in the third harmonic generation of UV band in comparison with a general conventional configuration. Furthermore, when the full energy of 18 mJ from a Ti:sapphire laser system was used and optimized, the UV emission could reach 0.83 mJ.
This paper demonstrates an approach that negative uniaxial crystal has a relative anomalous dispersion effect which can compensate group velocity delay, and applies this approach to nonlinear frequency conversion of an ultrafast laser field. High efficiency of the third harmonic generation is experimentally fulfilled by adopting a collinear configuration of doubing-compensation-tripling system. Through finely adjusting the incident angle and optical axis direction of the compensation plate, it obtains ultraviolet (UV) output energy of 0.32 mJ centered at 270 nm with spectral bandwidth of 2 nm when input beam at 800 nm was 70 fs pulse duration and 6 mJ pulse energy which was extracted from Ti:sapphire laser system by a diaphragm, corresponding to an 800-to-270 nm conversion efficiency of 5.3% and a factor-of-l.6 improvement in the third harmonic generation of UV band in comparison with a general conventional configuration. Furthermore, when the full energy of 18 mJ from a Ti:sapphire laser system was used and optimized, the UV emission could reach 0.83 mJ.
基金
Project supported by the National Basic Research Program of China (Grant No 2006CB0806001)
the Program for Changjiang and Innovative Research Team in University
Shanghai Leading Academic Discipline Project (Grant No B408)