期刊文献+

采用特征线方法对混合硬化情况下基于变形机制的应变梯度工程塑性理论的研究 被引量:3

A STUDY ON THE CONVENTIONAL THEORY OF MECHANISM-BASED STRAIN GRADIENT PLASTICITY FOR MIXED HARDENING BY THE METHOD OF CHARACTERISTICS
原文传递
导出
摘要 应变梯度工程塑性(简称CMSG)理论是一种低阶应变梯度塑性理论。它保持了经典塑性理论的基本结构,不需要非经典的附加边界条件,因此容易应用于数值分析。该文建立了在混合硬化情况下CMSG理论的本构关系,并采用非线性偏微分方程中的特征线方法研究其适定性。对于无限长固体层承受剪切的问题,确定了在不同的混合硬化情况下CMSG理论的"定解域"。在"定解域"内特征线方法的解与混合差分方法的解吻合得很好,但在"定解域"之外解有可能不唯一,因此需要非经典的附加边界条件才能使其解成为适定。随着外加剪切应力的增加,"定解域"逐渐收缩并最终消失。 The Conventional Theory of Mechanism-based Strain Gradient Plasticity (CMSG) is of lower-order strain gradient that retains the essential structure of classical plasticity theory. It does not require additional non-classical boundary conditions, thus it can be easily applied in numerical analysis. The constitutive relations of CMSG theory for mixed hardening are established, and its well-posedness is studied by the method of characteristics. For an infinite layer in shear, the "domain of determinacy" for CMSG theory at different mixed hardening states is determined. Within the "domain of determinacy", the presented results agree well with the numerical solution obtained by the finite difference method. Outside the "domain of determinacy", the solution may not be unique, in that case, the additional, non-classical boundary conditions are needed for the well-posedness of CMSG theory. As the applied shear stress increases, the "domain of determinacy" shrinks and eventually vanishes.
出处 《工程力学》 EI CSCD 北大核心 2009年第9期176-185,共10页 Engineering Mechanics
基金 国家自然科学基金项目(10121202) 教育部博士点专项科研基金项目(20020003023) 教育部重点专项基金项目(0306)
关键词 特征线方法 应变梯度 CMSG理论 混合硬化 定解域 method of characteristics strain gradient plasticity CMSG theory mixed hardening domain of determinacy
  • 相关文献

参考文献35

  • 1Acharya A, Bassani J L. Lattice incompatibility and a gradient theory of crystal plasticity [J]. Journal of the Mechanics and Physics of Solids. 2000.48: 1565-1595. 被引量:1
  • 2Acharya A, Beaudoin A J. Groin-size effect in viscoplastic polycrystals at moderate strains [J]. Journal of the Mechanics and Physics of Solids, 2000, 48:2213- 2230. 被引量:1
  • 3Bassani J L. Incompatibility and a simple gradient theory of plasticity [J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 1983-1996. 被引量:1
  • 4Beaudoin A J, Acharya A. A model for rate-dependent flowof metal polycrystals based on the slip plane lattice incompatibility [J]. Materials Science and Engineering A, 2001, 309:411-415. 被引量:1
  • 5Dai H, Parks D M. Geometrically-necessary dislocation density and scaledependent crystal plasticity [C]. Proceedings of Plasticity (Ed. AS Khan), Neat Press,1997. 被引量:1
  • 6Huang Y, Qu S, Hwang K C, Li M, Gao H. A conventional theory of mechanism based strain gradient plasticity [J]. International Journal of Plasticity, 2004, 20: 753-782. 被引量:1
  • 7Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids, 1993, 41 : 1825- 1857. 被引量:1
  • 8Fleck N A, Hutchinson J W. Strain gradient plasticity [C]// Hutchinson J W, Wu T Y. Advances in Applied Mechanics. New York: Academic Press, 1997, 33: 295- 361. 被引量:1
  • 9Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 2245- 2271. 被引量:1
  • 10Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity: theory and experiments [J]. Acta Metallurgica et Materialia, 1994, 42: 475-487. 被引量:1

同被引文献29

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部