摘要
Precise information about the spatial variability of soil properties is essential in developing site-specific soil management, such as variable rate application of fertilizers. In this study the sampling grid of 100 m × 100 m was established to collect 1 703 soil samples at the depth of 0-20 cm, and examine spatial patterns including 13 soil chemical properties (pH, OM, NH4^+, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn) in a 1 760 ha rice field in Haifeng farm, China, from 6th to 22nd of April, 2006, before fertilizer application and planting. Soil analysis was performed by ASI (Agro Services International) and data were analyzed both statistically and geostatistically. Results showed that the contents of soil OM, NH4^+, and Zn in Haifeng farm were very low for rice production and those of others were enough to meet the need for rice cultivation. The spatial distribution model and spatial dependence level for 13 soil chemical properties varied in the field. Soil Mg and B showed strong spatial variability on both descriptive statistics and geostatistics, and other properties showed moderate spatial variability. The maximum ranges for K, Ca, Mg, S, Cu and Mn were all - 3 990.6 m and the minimum ranges for soil pH, OM, NH4^+, P, Fe, and Zn ranged from 516.7 to 1 166.2 m. Clear patchy distribution of N, P, K, Mg, S, B, Mn, and Zn were found from their spatial distribution maps. This proved that sampling strategy for estimating variability should be adapted to the different soil chemical properties and field management. Therefore, the spatial variability of soil chemical properties with strong spatial dependence could be readily managed and a site-specific fertilization scheme for precision farming could be easily developed.
Precise information about the spatial variability of soil properties is essential in developing site-specific soil management, such as variable rate application of fertilizers. In this study the sampling grid of 100 m × 100 m was established to collect 1 703 soil samples at the depth of 0-20 cm, and examine spatial patterns including 13 soil chemical properties (pH, OM, NH4^+, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn) in a 1 760 ha rice field in Haifeng farm, China, from 6th to 22nd of April, 2006, before fertilizer application and planting. Soil analysis was performed by ASI (Agro Services International) and data were analyzed both statistically and geostatistically. Results showed that the contents of soil OM, NH4^+, and Zn in Haifeng farm were very low for rice production and those of others were enough to meet the need for rice cultivation. The spatial distribution model and spatial dependence level for 13 soil chemical properties varied in the field. Soil Mg and B showed strong spatial variability on both descriptive statistics and geostatistics, and other properties showed moderate spatial variability. The maximum ranges for K, Ca, Mg, S, Cu and Mn were all - 3 990.6 m and the minimum ranges for soil pH, OM, NH4^+, P, Fe, and Zn ranged from 516.7 to 1 166.2 m. Clear patchy distribution of N, P, K, Mg, S, B, Mn, and Zn were found from their spatial distribution maps. This proved that sampling strategy for estimating variability should be adapted to the different soil chemical properties and field management. Therefore, the spatial variability of soil chemical properties with strong spatial dependence could be readily managed and a site-specific fertilization scheme for precision farming could be easily developed.
基金
funded by thestarting project of scientific research for high-level tal-ents introduced by North China University of Water Conservancy and Electric Power (200723)
Shang-hai Municipal Key Task Projects of Prospering Agri-culture by the Science and Technology Plan, China(NGZ 1-10)