摘要
设Fq是q元特征为2的有限域,q是素数的幂.令信源集S为Fq上所有的n×n非交错矩阵的合同标准型,编码规则集ET和解码规则集ER为Fq上所有的n×n非奇异矩阵,信息集为Fq上所有的n×n奇异的非交错矩阵,构造映射f:s×ET|→M g:M×ER→S∪{欺诈}(Sr,P)|→PSrPt,(A,X)|→Sr,如果XKAKXt=Sr,秩A=r欺诈,其他其中K=In-100 0.证明了该六元组(S,ET,ER,M;f,g)是一个带仲裁的Cartesian认证码,并计算了该认证码的参数.进而,当收方与发方的编码规则按照等概率均匀分布选取时,计算出该码敌方模仿攻击成功的概率PI,敌方替换攻击成功的概率PS,发方模仿攻击成功的概率PT,收方模仿攻击成功的概率PR0,收方替换攻击成功的概率PR1.
Let Fq be the finite fields of characteristic 2 with q elements, where q is a power of a prime. Suppose the set of source states S is a cogredient normal form of all the n X n non-alternation matrices over Fq, the set of encoding rules ET and decoding rules ER are all of the n )× n nonsingular matrices over Fq, and the set of messages M is all of the n X n singular non-alternation matrices over Fq. Construct the maps f:s×ET|→M g:M×ER→S∪(reject)(Sr,P)|→PS,P^t, (A,X)|→{Sr,if XKAKX^T=Sr,rank(A)=r reject, otherwise where K=(^In-1 0 0 0 ) In this paper it is proved that (S, Er, ER, M;f, g)is a Cartesian authentication codes with arbitration, and the associated parameters are calculated. Moreover, when the encoding rules obey a uniform probability distribution,the probabilities of successful impersonation attack by the opponent, successful impersonation attack by the receiver and successful substitution attack by the receiver are computed.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2009年第3期275-279,共5页
Journal of Liaoning Normal University:Natural Science Edition
关键词
带仲裁的认证码
非交错对称矩阵
特征为2的有限域
authentication codes with arbitration
non-alternation symmetric metrix
finite fields of characteristic 2