期刊文献+

基于RBF神经网络变结构控制的齿隙和摩擦补偿 被引量:1

RBF Neural Network based Variable Structure Control of Backlash and Friction Compensation
下载PDF
导出
摘要 齿隙和摩擦是齿轮传动系统中制约运动控制精度不可避免的非线性现象,常规的PID控制难以达到较好的控制品质,变结构控制是解决非线性系统控制问题的一种有效方法。基于滞环齿隙模型和集合摩擦模型,建立了齿轮传动系统动力学模型。采用径向基函数(Radial Basis Function,RBF)神经网络和变结构原理构成复合控制器,对系统齿隙、摩擦进行了补偿。仿真分析了分别采用PID控制、增益固定变结构控制以及RBF神经网络变结构控制的补偿效果。结果表明,RBF神经网络变结构控制降低了增益固定变结构控制的抖振现象,控制精度优于PID控制。 Backlash and friction are the non-linearities arising in almost all the gear driving systems. It is difficult to meet the control request with the traditional PID control. Variable structure control is a valid approach to deal with non-linearity questions. The variable structure dynamic model of gear driving system was established based on backlash hysteresis model and friction aggregation model. The influence of backlash and friction was compensated based on RBF neural network variable structure compound controller. The effectiveness of PID control, variable structure control and RBF neural network variable structure control were simulated and compared. Results suggest that RBF neural network variable structure control can reduce the buffeting of variable structure control, and the precision is better than PID control.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第18期5858-5860,共3页 Journal of System Simulation
关键词 齿隙 摩擦 补偿 RBF神经网络 变结构控制 backlash friction compensation RBF neural network variable structure control
  • 相关文献

参考文献11

  • 1Jun-Juh Yan, Wei-Der Chang, Jui-Sheng Lin, et al.Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties [J]. Physics Letters A (S0375-9601), 2005, 335(4): 274-281. 被引量:1
  • 2Denis Garagic, Krishnaswamy Srinivasan. Adaptive friction compensation for precision machine tool drive [J]. Control Engineering Practice ($0967-0661), 2004, 12(11 ): 1451-1464. 被引量:1
  • 3Yan Jun-Juh, Shyu Kuo-Kai, Lin Jui-Sheng, Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity [J]. Chaos, Solitons and Fractals (S0960-0779), 2005, 25(2): 347-355. 被引量:1
  • 4高为炳著..变结构控制的理论及设计方法[M].北京:科学出版社,1996:364.
  • 5姚琼荟,宋立忠,鄢圣茂.离散变结构控制理论研究现状与展望[J].海军工程大学学报,2004,16(6):23-29. 被引量:14
  • 6张雅,向虎,郭芳瑞,张自亮.RBF网络模型参考自适应控制在温度控制中的仿真研究[J].系统仿真学报,2008,20(2):429-432. 被引量:12
  • 7刘金琨著..滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:452.
  • 8Huang S J, Huang K S, Chiou K C, Development and application of a novel radial basis function sliding mode controller [J]. Mechatronics (S 1007-080X), 2003, 13(4): 313-329. 被引量:1
  • 9Lin F J, Wai R J, Sliding-mode-controned slider-crank mechanism with fuzzy neural network [J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2001, 48(1): 60-70. 被引量:1
  • 10S Suraneni, I N Kar, O V Ramana Murthy, R K P Bhatt. Adaptive stickslip friction and backlash compensation using dynamic fuzzy logic system [J]. Applied Soft Computing (S 1568-4946), 2005, 6(1): 26-37. 被引量:1

二级参考文献112

  • 1宋立忠,姚琼荟,蔡汉强.离散变结构系统的组合控制策略研究[J].海军工程大学学报,2000,12(1):24-27. 被引量:5
  • 2高为炳.离散时间系统的变结构控制[J].自动化学报,1995,21(2):154-161. 被引量:134
  • 3刘军,刘丁,钱富才,王玲芝.基于模糊神经网络大容量输油泵多变量控制[J].控制理论与应用,2005,22(6):961-964. 被引量:6
  • 4宋立忠 温洪 姚琼荟.离散变结构控制系统的变速趋近律.海军工程学院学报,1999,(3):16-21. 被引量:12
  • 5Jung S L, Tzou Y Y. Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve [J]. IEEE Trans. Power Electronics, 1996,11(4):567-577. 被引量:1
  • 6Korondi P, Hashimoto H, Utkin V. Direct torsion control of flexible shaft in an observer-based discrete-time sliding mode [J]. IEEE Trans. Industrial Electronics, 1998,45(2):291-296. 被引量:1
  • 7Won M, Hedrick J K. Disturbance adaptive discrete-time sliding control with application to engine speed control [J]. ASME J. Dynamic Systems, Measurement, and Control, 1997,119:503-512. 被引量:1
  • 8Chern T L, Chang J, Chen C H, et al. Microprocessor-based modified discrete integral variable-structure control for UPS [J]. IEEE Trans. Industrial Electronics, 1999,46(2):340-347. 被引量:1
  • 9Kaynak O, Erbatur K, Ertugrul M. The fusion of computationally intelligent methodologies and sliding-mode control-a survey [J]. IEEE Trans. Industrial Electronics, 2001,48(1):4-17. 被引量:1
  • 10Onder E M, Kaynak O, Wilamowski B M. Stable training of computationally intelligent systems by using variable structure systems technique [J]. IEEE Trans. Industrial Electronics, 2000,47(2):487-496. 被引量:1

共引文献24

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部