期刊文献+

非线性泛函微分系统的指数稳定

The exponential stability of a nonlinear functional differential system
原文传递
导出
摘要 利用线性化的方法,解决一类非线性泛函微分系统的周期解的稳定性。如果非线性泛函微分系统的周期的齐次线性微分系统的零解是指数稳定的,那么可以得到非线性泛函微分系统的周期解是指数稳定的。以周期的Lotka-Volterra型n-种群竞争系统为例,得到系统周期解是指数稳定的。 Periodic solutions of a class of nonlinear functional differential system(FDS) am studied using the method of linearization. It shows that the periodic solution of the nonlinear FDS is exponentially stable, if the zero solution of the associated hnear periodic linear homogeneous FDS is exponentially stable. We obtain the exponential stability of a class of periodic Lotka-Volterra type n-species competitive systems.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第9期84-89,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10071048) 阜阳师范学院青年基金资助项目(2008LQ12)
关键词 线性化 周期解 指数稳定 hnearization periodic solution exponential stability
  • 引文网络
  • 相关文献

参考文献9

  • 1MAGAL P, ARINO O. Existence of periodic solutions for a state dependent delay equations[ J]. J Diff Equ, 2000, 165:61-95. 被引量:1
  • 2DOMOSHNITSKY A, DRAKHLIN M. Periodic solutions of differential equations with delay depending on solution[J]. Nonl Anal, 1997, 30(5) : 2665-2672. 被引量:1
  • 3AIELLO W G, FREEDMAN H I, WU J. Analysis of a model representing stage-structured population growth with state-dependent time delay[J]. SIAM J Math Anal, 1999, 52(3) :855-869. 被引量:1
  • 4HARTUNG F. Linearized stability in periodic functional differential equations with state-dependent delay[J]. J Comp Math Appl, 1989, 20: 388-395. 被引量:1
  • 5HARTUNG F, TURI J. On differentiability of solutions with respect to parameters in with state-dependent delay equations[J]. J Diff Equ, 1997, 138(2) : 192-237. 被引量:1
  • 6MUROYA Y. Persistence and global stability in Lotka-Volterra delay differential systems[J]. Appl Anal Lett, 2004, 17:795-800. 被引量:1
  • 7TENG Z D, YU Y H. Some new results of nonautonomous Lotka-Volterra competitive systems with delays[J]. J Math Anal Appl, 2000, 241 : 254-275. 被引量:1
  • 8HALE J K. Theory of functional differential equations[M]. New York: Springer Verlag, 1977. 被引量:1
  • 9GOPALSAMY K. Stability and oscillations in delay differential equations of population dynamics[ M]. Boston: Kluwer Academic Publishers, 1992. 被引量:1

相关主题

;
使用帮助 返回顶部