期刊文献+

隐非齐次马尔可夫模型的强大数定律 被引量:1

The strong law of large numbers of nonhomogeneous hidden Markov models
下载PDF
导出
摘要 在状态集都有限的情况下,给出了隐马尔可夫模型的一些性质定理.利用马氏链的强极限定理,得到了隐非齐次马尔可夫模型的强大数定律. In this paper, we get some properties of hidden Markov models when the sets are limited. By the strong limited theorem of Markov chains, we obtained some strong laws of large numbers for nonhomogeneous hidden Markov model.
出处 《纯粹数学与应用数学》 CSCD 2009年第3期502-507,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10571076 10826098) 安徽工程科技学院院青年基金(2007YQ025)
关键词 隐马尔科夫模型 隐非齐次马尔可夫模型 强大数定律 hidden Markov models, nonhomogeneous hidden Markov models, strong law of large numbers
  • 相关文献

参考文献11

  • 1Leroux B G. Maximum-likelihood estimation for hidden Markov models[J]. Stochastic process Appl., 1992, 40: 127-143. 被引量:1
  • 2Genon-Catalot V, Laredo C. Leroux's method for general hidden Markov models[J]. Stochastic process Appl., 2006, 116: 222-243. 被引量:1
  • 3Bickel P J, Ritov R, Ya'acov T R. Asmptotic normality of the maximum-likelihood estimator for general hidden markov models[J]. Ann. Statist., 1998, 26(4): 1614-1635. 被引量:1
  • 4Maxwell M, Woodroofe M. A local limit theorem for hidden Markov chains[J]. Stat. Probab. Letts., 1997, 32: 125-131. 被引量:1
  • 5Beatriz L, Pilar L, Alberto L. Dynamic graphical models and nonhomogeneous hidden Markov models[J]. Statistics Probability Letters, 2000, 49: 377-385. 被引量:1
  • 6Bryson C, Bates S. Stochastic downscaling of numerical climate model simulations[J]. Environmental Modelling Software, 1998, 13: 325-331. 被引量:1
  • 7杨卫国,吴小太,王豹.一类隐马尔可夫模型的若干极限性质[J].江苏大学学报(自然科学版),2006,27(5):467-470. 被引量:3
  • 8王梓坤,杨向群著..生灭过程与马尔可夫链[M].北京:科学出版社,2005:403.
  • 9Liu W, Yang W G. A class of strong limit theorems for the sequences of arbitrary random variables[J]. Stat. Probab. Letts., 2003, 64: 121-131. 被引量:1
  • 10Liu W, Yang W G. An extension of Shannon-Mcmillan theorem and some limit properties for nonhomogeneous Markov chains[J]. Stochastic Process. Appl., 1996, 61: 129-145. 被引量:1

二级参考文献12

  • 1汪忠志.关于M值随机序列的一个普遍成立的强大数定理(英文)[J].纯粹数学与应用数学,2004,20(4):327-333. 被引量:6
  • 2杨卫国,李芳,王小胜.一类非齐次马氏链的收敛速度[J].江苏大学学报(自然科学版),2005,26(2):137-139. 被引量:5
  • 3杨卫国,黄辉林,马越.奇偶树上马氏链场的强大数定律[J].江苏大学学报(自然科学版),2005,26(3):244-247. 被引量:3
  • 4Bowerman B, David H T, Isaacson D. The convergence of Cesaro averages for certain nonstationary Markov chains [J]. Stochastic Processes and their Applications, 1977, 5:221-230. 被引量:1
  • 5Yang weiguo. Convergence in the Cesaro sense and strong law of large numbers for nonhomogeneous Markov chains [J]. Linear Algebra and its Application, 2002,345:275-288. 被引量:1
  • 6Chung Kailai. A course in probability theory [M]. Second Edition. New York:Academic Press, 1974. 被引量:1
  • 7Brian G Leroux. Maximum-likelihood estimation for hidden Markov models [J]. Stochastic Processes and their Appl, 1992,40 : 127 - 143. 被引量:1
  • 8Peter J Bickel, Ya'acov Ritov, Tobias Ryden. Asmptotic normality of the maximum-likelihood estimator for general hidden Markov models [J]. The Annals of Statistics,1998,26(4) :1614 - 1635. 被引量:1
  • 9Lacruz B, Lasala P, Lekuona A. Dynamic graphical models and nonhomogeneous hidden Markov models [J].Stat Proba Letts, 2000,49:377 - 385. 被引量:1
  • 10Bates B C, Charles S P, Hughes J P. Stochastic downscaling of numerical climate model simulations[J]. Environmental Modelling & Software, 1998,13:325 - 331. 被引量:1

共引文献4

同被引文献11

  • 1龚光鲁,钱敏平.应用随机过程[M].北京:清华大学出版社,2004. 被引量:4
  • 2Lacrz B, Lasala P, Lekuona A. Dynamic graphical models and nonhomogeneous hidden Markov models [J].Stat. Probab. Letts., 2000,49:377-385. 被引量:1
  • 3Bates B C, Charles S P, Hughes P. Stochastic downscaling of numerical climate model simulations [J].Envrionmental Modelling Software, 1998,13:325-331. 被引量:1
  • 4Leroux B G. Maximum-likelihood estimation for hidden Markov models [J]. Stochastic Processes and theirAppl., 1992,40:127-143. 被引量:1
  • 5Bickel P, Ritov Y, Ryden T. A smptotic normality of the maximum-likelihood estimation for general hiddenMarkov models [J]. The Annals of Statistics, 1998,26(4):1614-1635. 被引量:1
  • 6Ephrain Y, Merhav N. Hidden Markov process [J]. 2002,48(6):1518-1569. 被引量:1
  • 7Chung K L. A Course in Probability Theory [M]. 2nd ed, New York: Academic Press, 1974. 被引量:1
  • 8Yang W G. The asymptotic equipartition property for a nonhomogeneous Markov information source [J].Probability in the Engineering and Informational Science, 1998,12:509-518. 被引量:1
  • 9Yang W G. Convergence in the cesaro sense and strong law of large numbers for countable nonhomogeneousMarkov chains [J]. Linear Algebra and its Application, 2002,354:275-286. 被引量:1
  • 10Yang W G. Strong law of large numbers for countable nonhomogeneous Markov chains [J]. Linear Algebraand its Application, 2009,430:3009-3018. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部