期刊文献+

材料性质和试样几何形状对应力三维度的影响 被引量:1

Influence of material properties and specimen geometry shapes on stress triaxiality
下载PDF
导出
摘要 为研究应力三维度和塑性应变对金属材料微孔聚合型损伤发展和延性断裂过程的影响,用有限元法计算16Mn钢和两种铝合金材料不同缺口根半径拉伸试样的应力、应变分布.结果表明:缺口根半径越小,最小横截面上周向和径向应变相差越大且越不均匀,并导致最小横截面上的应力三维度与Bridgman公式预测结果不一样.材料性质和试样几何形状对应力三维度的影响很大:缺口根半径相同的3种材料试样最小横截面的应力三维度分布形态相似,但应力三维度峰值及其所处位置有所不同;同种材料的试样缺口根半径不同,应力三维度分布形态也不同. To study the influence of stress triaxiality and plastic strain on the microvoid coalescence damage development and ductile fracture process of metal materials, the stress and strain distributions of the tensile specimens with different notch root radius are calculated by finite element method for 16Mn steel and two kinds of aluminum alloys. To the smallest cross-section, the results show that the smaller notch root radius leads to the larger difference between the circumferential strain and the radial strain, the less uniform of the strain, and the difference of the stress triaxiality from the one predicted by Bridgman equation. The material properties and the specimen geometry have a very important influence on stress triaxiality. That is, although the tress triaxiality distribution are similar at the smallest cross-section for three kinds of specimens with the same notch root radius, the maximum values and their locations are different; the stress triaxiality distributions are different for the same kind of material specimens with different notch root radius.
出处 《计算机辅助工程》 2009年第3期16-22,共7页 Computer Aided Engineering
关键词 应力三维度 材料性质 试样几何形状 缺口根半径 Bridgman公式 有限元 stress triaxiality material property specimen geometry shape notch root radius Bridgman equation finite element
  • 相关文献

参考文献16

  • 1COULOMB C A. In memories de mathematique et de physique[J]. Academic Royal des Sciences par divers sans, 1773(7) : 343-382. 被引量:1
  • 2陈建桥主编..材料力学[M].武汉:华中科技大学出版社,2001:234.
  • 3YU Maohong. Advances in strength theories for materials complex stress state in the 20th century[ J]. Appl Mech, 2002, 55 (3) : 169-218. 被引量:1
  • 4yon LODE W. Veruche uber einfluss der mittleren haupspannung auf das fliessen der metallic eisen, kupfer und nickel[ J]. Zeits Physik/ Zeitschrift fur Physik, 1926(36) : 913-939. 被引量:1
  • 5BRIDGMAN P. Studies in large plastic flow and fracture[ M ]. McGraw-Hill Book Co, Inc, New York: 1952. 被引量:1
  • 6GURSON A L. Continuum theory of ductile rupture by void nucleation and growth-Part I: Yield criteria and flow rules for porous ductile media[J]. J Eng Mater Tech, 1977, 99( 1 ) : 2-15. 被引量:1
  • 7KOPLIK J, NEEDLEMAN A. Void growth and coalescence in porous plastic solids[ J]. Int J Solids Struct, 1988, 24 (8) : 835-853. 被引量:1
  • 8NEEDLEMAN A, TVERGAARD V. An analysis of ductile rupture modes at a crack tip[J]. J Mech Phys Solids, 1987, 35(2) : 151-183. 被引量:1
  • 9SCHLUTER N, GIMPE F. Modeling of the damage in ductile steels[ J]. Comput Mat Sci, 1996, 7 (1) : 27-33. 被引量:1
  • 10OCHSNER A, GEGNER J. Experimental and numerical investigations of ductile damage in aluminum alloys[J]. Mat Sci & Eng A, 2001, 318 (2) : 328-333. 被引量:1

共引文献2

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部