期刊文献+

基于曲波和遗传算法的图像去噪 被引量:2

Image Denoising Based on Curvelet and Genetic Algorithms
下载PDF
导出
摘要 本文介绍了一种基于曲波变换和遗传算法的图像去噪方法,该方法利用软阈值规则调节噪声图像的曲波系数,以达到去除图像噪声的目的,去噪时使用遗传算法和广义交叉验证准则搜索最优的阈值。基于Lena和Barbara图像的实验结果表明,与小波图像去噪相比,曲波去噪后图像峰值信噪比(PSNR)和视觉效果有较大提高,特别是对图像边缘的恢复上效果明显。 In this paper, an image denoising method is presented based on curvelet transform and genetic algorithms (GAs). In such a method, the soft thresholding algorithms are employed to threshold the eurvelet coefficients of the noise images; genetic algorithms and general cross validation (GCV) are used to search the optimal threshold. Experiment results performed on Lena and Barbara images show that the PSNR and vision of the curvelet denoised images improve a lot, especially at the edge of the images, as compared to the wavelet method.
作者 蔡炳煌
出处 《中山大学研究生学刊(自然科学与医学版)》 2009年第2期105-114,共10页 Journal of the Graduates Sun YAT-SEN University(Natural Sciences.Medicine)
关键词 曲波 脊波 小波 图像去噪 遗传算法 广义交叉准则 Curvelet Ridgelet Wavelet Image Denoising Genetic Algorithms ( GAs ) General Cross Validation (GCV)
  • 相关文献

参考文献3

二级参考文献11

  • 1CANDèS E J.Harmoic analysis of neural networks[J].Appl Comput Harmon Anal,1999,6:197-218. 被引量:1
  • 2STARCK J L CANDèS E J DONOHO D L.The Curvelet transform for image denoising[J].IEEE Trans Image Proc,2002,11(6):670-684. 被引量:1
  • 3Emmanuel J. CANDèS,David L. DONOHO. Continuous Curvelet Transform:Resolution of the Wavefront Set[EB/OL]. Available:www-stat.stanford.edu/~donoho/Reports/2003/ContCurveletTransform-I.pdf,2003-5-6/2004-8-15. 被引量:1
  • 4Emmanuel J. CANDèS,David L. DONOHO. Continuous Curvelet Transform:Discretization and Frames [EB/OL]. Available:www-stat.stanford.edu/~donoho/Reports/2003/ContCurveletTransform-II.pdf,2003-5-6/2004-8-15. 被引量:1
  • 5Emmanuel J. CANDèS,David L. DONOHO. Curvelets-a surprisingly effective nonadaptive representation for objects with edges [EB/OL]. http://www.acm.caltech.edu/~emmanuel/papers/Curvelet-SMStyle.pdf,1999-12-16/2004-9-20. 被引量:1
  • 6Jean-Luc STARCK,Emmanuel J. CANDèS,David L. DONOHO. The Curvelet transform for image denoising[J]. IEEE Trans Image Proc,2002,11(6):670-684. 被引量:1
  • 7Jean-Luc STARCK,Fionn MURTAGH,Emmanuel J. CANDèS,et al. Gray and Color Image Contrast Enhancement by the Curvelet Transform[J]. IEEE Trans Image Proc,2003,12(6):706-716. 被引量:1
  • 8马拉特 杨力华.信号处理的小波导引[M].北京:机械工业出版社,2003.. 被引量:4
  • 9David L. DONOHO,Mark R. DUNCAN. Digital Curvelet transform:strategy,implementation and experiments[J]. SPIE, 2000,4056:12-29. 被引量:1
  • 10Tony T. CAI,Bernard W. SILVERMAN. Incorporating information on Neighbouring Coefficients into wavelet estimation[J]. The Indian Journal of Statistics,2001,63(2B):127-148. 被引量:1

共引文献31

同被引文献19

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部