期刊文献+

基于黎曼流形上的非可微规划问题的必要最优性条件 被引量:1

Necessary optimality conditions in a nondifferentiable mathematical programming on riemannian manifolds
下载PDF
导出
摘要 针对黎曼流形上的非可微数学规划问题,在黎曼流形上分别给出了Lipschitz函数的广义方向导数和广义梯度的概念.利用黎曼流形局部与欧氏空间开集微分同胚的性质,把定义在线性空间上的广义方向导数和广义梯度的性质和运算法则通过切映射传递到流形的切空间上去.在此基础上,利用Ekeland变分原理,推导出基于黎曼流形上具有等式和不等式约束的数学规划问题的必要最优性条件. In order to solve the nondifferentiable mathematical programming on Riemannian manifolds, the definitions of generalized directional derivative and generalized gradient of Lipschitz functions defined on Riemannian manifold are presented, respectively. By using tangent mapping, some properties of generalized directional derivative and generalized gradient are given. Moreover, the necessary optimality conditions in mathematical programming problem with equality and inequality constraints of Lipschitz functions are derived with the help of Ekeland variational principle on Riemannian manifolds.
作者 肖刚 刘三阳
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期5-9,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(60574075)
关键词 广义方向导数 广义梯度 必要最优性条件 黎曼流形 generalized directional derivative generalized gradient necessary optimality condition riemannian manifold
  • 相关文献

参考文献12

  • 1朴勇杰,金光植.一般化凸空间上变分不等式解的存在定理[J].东北师大学报(自然科学版),2007,39(1):28-31. 被引量:5
  • 2朴勇杰.一般化凸空间上极大元和平衡点的存在问题[J].东北师大学报(自然科学版),2008,40(4):24-27. 被引量:1
  • 3UDRISTE,CONSTANTIN. Convex functions and optimization methods on riemannian manifolds[M]. Kluwer:Academic Publishers, 1994 :65-102. 被引量:1
  • 4DANIEL AZAGRA,JUAN FERRERA. Fernando Lopez-Mesas,nonsmooth analysis and Hamilton Jacobi equations on smooth manifolds[J]. Joural of Functional Analysis, 2005,220 : 304-361. 被引量:1
  • 5LEDYAEV Y S,ZHU Q J. Techniques for nonsmooth analysis on smooth manifolds I: local problems[J]. Lecture Notes in Control and Information Sciences,2004(301):283-297. 被引量:1
  • 6LEDYAEV Y S, ZHU Q J. Techniques for nonsmooth analysis on smooth manifolds Ⅱ : deformations and flows[J]. Lecture Notes in Control and Information Sciences, 2004( 301 ):299-311. 被引量:1
  • 7DANIEL AZAGRA,JUAN FERRERA. Proximal calculus on riemannian manifolds[J]. Mediterranean Journal of Mathematics, 2005,2:437-450. 被引量:1
  • 8CLARKE F H, LEDYAEV Y S, STENN R J, et al. Nonsmooth analysis and control theory, grad texts in math[M]. Berlin: Springer, 1998 : 69-96. 被引量:1
  • 9CLARKE F H. Optimization and nonsmooth analysis[M]. New York : John Wiley Sons, Inc, 1983 : 25-95. 被引量:1
  • 10BOOTH BY. An introduction to differential manifolds and riemannian geometry, second edition[M]. Orlando:Academic Press, 1988 :10-150. 被引量:1

二级参考文献15

  • 1朴勇杰,金雪莲.一般化凸空间上ψ^*-凝聚映射的不动点定理[J].东北师大学报(自然科学版),2005,37(4):7-10. 被引量:1
  • 2朴勇杰,金光植.一般化凸空间上变分不等式解的存在定理[J].东北师大学报(自然科学版),2007,39(1):28-31. 被引量:5
  • 3PARK SEHIE. New susclasses of generalized concex spaees[J ]. Fixed Point Theory and Applications, 2000 (2) :91-98. 被引量:1
  • 4LASSONDE M. On the use of KKM multimaps in fixed point theory and related topics[J]. J Math Anal Appl, 1983,97:151-201. 被引量:1
  • 5HORVATH C D. Contractility and generalized convexity[J ]. J Math Anal Appl, 1991,156:341-357. 被引量:1
  • 6METHA G S,TAN K-K,YUAN X Z. Fixed points,maximal elements and equilibia of generalized games[J]. Nonlinear Anal Theory, Method and Appl, 1997,28: 689-699. 被引量:1
  • 7SOUHAIL CHEBBI, MONIQUE FLORENZANO. Maximal dements and equilibria for condensing oorrespondences[J ]. Nonlinear Anal, 1999,38 : 995-1002. 被引量:1
  • 8YUAN X Z,TARAFDAR E. Maximal elements and eqilibria of generalized games for condensing correspondences[ J ]. J Math Anal Appl, 1996,203:13-30. 被引量:1
  • 9SEHIE PARK.New subclasses of generalizded convex spaces[A].Fixed point theory and Applications (Y J Cho,ed)[C].New York:Nova Sci Publ,2000:91-99. 被引量:1
  • 10LASSONDE M.On the use of KKM multimaps in fixde point theory and related topics[J].J Math Anal Appl,1983,97:151-201. 被引量:1

共引文献4

同被引文献17

  • 1常健,张庆祥.具有广义B-凸函数的非光滑多目标规划的对偶性[J].天津师范大学学报(自然科学版),2007,27(2):58-60. 被引量:4
  • 2Clarke F H. Optimization and Nonsmooth Analysis [ M]. New York: Wiley-Interscience, 1983. 被引量:1
  • 3刘庆怀 董加礼.γ-次微分意义下的非光滑规划的最优性条件.东北大学学报:自然科学版,:71-75. 被引量:1
  • 4Hoang X P. y-Subdifferential and y-Convexity of Functions on the Real Line [ J]. Appl Math Optim, 1993, 27: 145-160. 被引量:1
  • 5Phu H X. y-Subdifferential and γ-Convexity of Functions on a Normed Space [ J]. Journal of Optimization Theory and Applications, 1995, 85 (3) : 649-676. 被引量:1
  • 6Phu H X, Hai N N. Some Analytical Properties of γ-Convex Functions on the Real Line [ J ]. Journal of Optimization Theory and Applications, 1996, 91 (3): 671-694. 被引量:1
  • 7Phu H X, Hai N N. Some Analytical Properties of T-Convex Functions in Normed Linear Spaces [ J ]. Journal of Optimization Theory and Applications, 2005, 126(3) : 685-700. 被引量:1
  • 8Phu H X, Pho Vm. Global Infimum of Strictly Convex Quadratic Functions with Bounded Perturbations [ J]. Math Meth Oper Res, 2010, 72(2) : 327-345. 被引量:1
  • 9孙喜梅 刘庆怀 董加礼.一维空间R上的γ-次微分修正及其性质.东北运筹与应用数学,:14-17. 被引量:1
  • 10Rockafellar R T. Convex Analysis [ M ]. Princeton : Princeton University Press, 1972. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部