期刊文献+

三维激光扫描拟合平面自动提取算法 被引量:20

Fitted Plane Automatic Extraction Algorithm of 3-D Laser Scanning
下载PDF
导出
摘要 在对现有的点云数据分割和拟合算法进行深入研究的基础上,指出现有算法的不足.充分利用扫描线数据自身固有的特点,提出了新的算法.对RANSAC算法进行了改进,改进后的算法既具有较好的抗差性能,又在计算效率上较现有的抗差算法有了较大的提高,且能够得到更准确的提取结果和更合理的扫描点分隔归属.提出了平面拟合计算过程中拟合直线段端点的定权算法,解决了现有算法中由于拟合直线段端点权重不同无法直接参与平面拟合计算的问题.提出了完整的细碎平面剔除规则.实例证明,利用该算法能够取得较好的点云数据拟合平面自动提取结果. A profound research reveals the defects of the existing point cloud segmentation and fitting algorithms. The paper presents new algorithms according to the intrinsic characteristics of scanned line data. Random sample consensus (RANSAC) algorithm is modified, and a more robust and efficient algorithm is obtained with the better extraction result and more rational segmentation result. A weight determining algorithm for ends of fitted line segments used in plane fitting is proposed, which solves the problem in traditional algorithms that ends of line segments can't be used in plane fitting directly because of the different weights. Besides, a set of integral invalid plane removing algorithm is proposed. A case study show that better plane extraction results of point cloud are achieved with the proposed algorithm.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期1250-1255,共6页 Journal of Tongji University:Natural Science
关键词 三维激光扫描 点云数据 改进的RANSAC算法 拟合直线段 拟合平面 细碎平面剔除 3 - D laser scanning point cloud data improved random sample consensus algorithm line fitting plane fitting invalid plane removing
  • 相关文献

参考文献10

  • 1Besl P J, Jain R C. Invariant surface characteristics for 3D object recognition in range images[J]. Computer Vision, Graphics Image Process, 1986, 33(1) : 33. 被引量:1
  • 2Besl P J,Jain R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(2):167. 被引量:1
  • 3Fitzgibbon A W, Eggert D,Fisher R B. High-Level CAD model acquisition from range image[J]. Computer-Aided Design, 1997,29 (4):321. 被引量:1
  • 4Bose S K, Biswas K K, Gupta S K. An integrated approach for range image segmentation and representation [J]. Journal of Artificial Intelligence in Engineering, 1996, 10(3):243. 被引量:1
  • 5李松涛,张长水,荣钢,边肇祺,Dongming Zhao.一种基于最小二乘估计的深度图像曲面拟合方法[J].自动化学报,2002,28(2):310-313. 被引量:10
  • 6Yokoya N, Martin D L. Range image segmentation based on differential geometry:a hybrid approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (6): 643. 被引量:1
  • 7TruccoE, Fisher R B. Experiments in curvature-based segmentation of range data[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995, 17 (2) : 177. 被引量:1
  • 8Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J].Graphics and Image Processing, 1981,24(6) :381. 被引量:1
  • 9Jiang X, Bunkea H, Meier U. High-level feature based range image segmentation[J].Image and Vision Computing, 2000,18 (10) : 817. 被引量:1
  • 10Jiang X, Bunke H. Fast segmentation of range images into planar regions by scan line grouping[J]. Machine Vision and Applications, 1994, 7(2):115. 被引量:1

二级参考文献1

  • 1李松涛.深度图像处理方法的研究:学位论文[M].北京:清华大学,1998.. 被引量:1

共引文献9

同被引文献146

引证文献20

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部