摘要
采用有限元方法数值模拟了分形裂隙的渗流场问题。利用二元分形插值函数模型插值出裂隙的粗糙曲面,生成多个粗糙裂隙的有限元模型。根据稳态渗流问题的Darcy定律,计算不同分形维数下裂隙剖面的等效导水系数。研究表明,裂隙剖面的分形维数越大,它的粗糙程度越强,裂隙剖面的等效导水系数会随着分形维数的增加而降低。在裂隙剖面的分形维数为常数的条件下,相继对剖面两端施以逐渐增大的压力差,流体通过横断面的平均流速会随着压力差的增加而增加,而裂隙剖面的等效导水系数则会随着压力差的增加而减小。
The water flow problem in fractal fractured rock is simulated by using finite element method. Some finite element models of rough fracture are generated with the different values of the vertical scale factor which control the fractal dimension of a fractal interpolation surface. The effective transmissibility of rock joint profile is computed according to Darcy law. The numerical results shows that the fractal dimension of the profile will increase with the rising rock wall roughness and the transmissibility of rock joint profile will decrease with the rising fractal dimension. While the fractal dimension of a fracture profile is constant and the pressure difference is different, the average velocity of a cross section will increase with the rising pressure difference, the transmissibility will decrease with the rising pressure difference.
出处
《武汉工业学院学报》
CAS
2009年第3期78-81,共4页
Journal of Wuhan Polytechnic University
基金
国家重点基础研究发展规划项目(2007CB714006)
国家自然科学基金重点资助项目(90815023)
关键词
裂隙岩体
分形
渗流
导水系数
单裂隙
fractured rock
fractal surface
fluid flow
transmissibility
single fracture