摘要
讨论了二阶非线性边值问题-u″(t)+bu′(t)+au(t)=f(t,u(t)),t∈[0,1]u(0)=u(1)=0正解的存在性,其中f∶[0,1]×R+→R+为连续函数.利用锥上的不动点理论,获得了正解存在的最优结果.
This paper studies the existence of positive solutions for the second order boundary value problem {-u″(t)+bu′(t)+au(t)=f(t,u(t)),t∈[0,1];u(0)=u(1)0 where f:[0,1]×R+→R+ is continuous. The existence of positive solutions is obtained by applying the fixed-point theorem of cone map.
出处
《甘肃科学学报》
2009年第3期10-14,共5页
Journal of Gansu Sciences
关键词
二阶边值问题
正解
锥
不动点
second-order boundary value problem
positive solution
cone
fixed-point