期刊文献+

基于神经网络无铆钉自冲铆接头力学性能预测 被引量:11

Neural network-based mechanical property prediction in the mechanical clinching joints
下载PDF
导出
摘要 为研究钢铝一体化结构车身无铆钉自冲铆接接头力学性能,引入反向传播神经网络模型来描述板材厚度、板材硬度和成形接头底部直径等工艺参数与接头剪切力及剥离力强度等力学性能的映射关系。由于标准反向传播网络存在训练精度低、收敛速度慢及泛化能力差等缺陷,采用归一化法与Levenberg-Marquardt算法相结合的算法来优化神经网络预测模型连接权值,提高了神经网络模型的预测精度和泛化能力。对神经网络的预测结果进行检验的结果表明,训练后的神经网络模型能够准确有效地预测无铆钉自冲铆接接头力学性能,证实了神经元网络应用于无铆钉自冲铆接接头力学性能预测的可行性与可靠性,为优质的钢与铝无铆钉自冲铆接接头的设计提供了依据。 In order to investigate the property of mechanical clinching joints in the steel-aluminum hybrid structure car body, back-propagation (BP) neural networks were introduced to describe the mapping relationships among such joining technique parameters as sheet thickness, sheet hardness and joint bottom diameter and joints mechanical properties of shearing and peeling. To overcome the existing disadvantages of the standard propagation algorithm in lower training precision, low convergence speed and weak generalization capability, the algorithms of normalization and Levenberg-Marquardt were combined to optimize the standard BP neural network connection weights and improve the model prediction precision and generalization capability. The training and validating samples were performed by the BTM Tog-L-Loc system with different combinations of technique parameters. Then the parameters of training samples and the corresponding joint mechanical properties were supplied to the neural networks for training, and the experimental data validating samples were used to check up the prediction outputs. The results showed that the neural network prediction models after training could effectively predict the mechanical properties of joints and proved to be feasible and reliable, so as to improve the design of the clinching joints applied in steel-aluminum hybrid structure automotive body manufactures
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第8期1614-1620,共7页 Computer Integrated Manufacturing Systems
基金 广东省科技计划资助项目(2007B010400052) 汽车车身先进设计制造国家重点实验室开放基金资助项目(30715006)~~
关键词 无铆钉自冲铆 接头 反向传播神经网络 预测 mechanical clinching joint back-propagation neural network prediction
  • 相关文献

参考文献10

  • 1中国汽车工程学会..世界汽车技术发展跟踪研究[M],2006.
  • 2龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008,44(6):27-35. 被引量:140
  • 3VARIS J P.The suitability of clinching as a joining method for high-strength structural steel[J].Journal of Materials Processing Technology,2003,132(1/3):242-249. 被引量:1
  • 4VARIS J P,LEPISTO J.A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters[J].Thin-Walled Structures,2003,41 (8):691-709. 被引量:1
  • 5MOTA C P A,COSTA N G.A comparative study between the sheet joining processes by point TOX? and spot welding[C]//Proceedings of Annual Congress of the Brazilian Society for Metallurgy and Materials.Brazil:ABM,2005:2733-2741. 被引量:1
  • 6VARIS J.Ensuring the integrity in clinching process[J].Journal of Materials Processing Technology,2006,174(1/3):277-285. 被引量:1
  • 7VARIS J.Economics of clinched joint compared to riveted joint and example of applying calculations to a volume product[J].Journal of Materials Processing Technology,2006,172(1):130-138. 被引量:1
  • 8PAULA A A,AGUILAR M T P,PERTENCE A E M,et al.Finite element simulations of the clinch joining of metallic sheets[J].Journal of Materials Processing Technology,2007,182(1/3):352-357. 被引量:1
  • 9PEDRESCHI R F,SINHA B P.An experimental study of cold formed steel trusses using mechanical clinching[J].Construction and Building Materials,2008,22 (5):921-931. 被引量:1
  • 10HECHT-NIELSON R.Theory of the back-propagation neural network[C]//Proceedings of International Joint Conference on Neural Networks.Washington,D.C.,USA:IEEE,1989:583-604. 被引量:1

二级参考文献43

共引文献139

同被引文献85

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部