期刊文献+

多目标进化算法中选择策略的研究 被引量:5

Study on Selection Strategies of Multiobjective Evolutionary Algorithms
下载PDF
导出
摘要 在多目标进化算法(multiobjective evolutionary algorithms,MOEAs)的文献中,对算法的选择策略进行系统研究的还很少,而MOEAs的选择策略不仅引导算法的搜索过程、决定搜索的方向而且对算法的收敛性有重要的影响,它是算法能否成功求解多目标优化问题的关键因素之一。在统一的框架下,首先讨论了多目标优化问题中适应度函数的构造问题,然后根据MOEAs的选择机制和原理将它们的选择策略重新分成了6种类型。一般文献中很少对多目标进化算法的操作算子采用符号化描述,这样不利于对算子的深层次理解,符号化描述了各类选择策略的操作机制和原理,并分析了各类策略的优劣性。最后,从理论上证明了具备一定特征的多目标进化算法的收敛性,证明的过程表明了将算法运行终止时得到的Pknown作为多目标优化问题的Pareto最优解集或近似最优解集的合理性。 It is scarce for literatures devoted to the multiobjective evolutionary algorithms (MOEAs) to systematically research on selection strategies, however, these strategies are crucial to MOEAs for solving some multiobjective optimization problems successfully, as they not only guide the process of search and determine the search directions, but also exert great effect on the convergence of MOEAs. With the unified framework, the paper first discussed how to construct an appropriate fitness function in multiobjective optimization problem, then, selection strategies were classified as six categories based on MOEA's selection mechanism and principle through systematically analyzing various MOEAs. As it is rare for expressing the operators of the MOEAs symbolized in most literatures, which is not conducive to comprehend them deeply. This paper described the principle and mechanism of each selection strategy symbolized and analyzed its advantages and weaknesses respectively. At last, the paper proved the convergence of MOEAs with certain features, and the process of proof has shown that it is reasonable to regard Pknown achieved from the final results of MOEAs as Ptrue or the approximated Pareto optimal set.
出处 《计算机科学》 CSCD 北大核心 2009年第9期167-172,共6页 Computer Science
基金 教育部博士点基金项目(编号:20070486081)资助
关键词 多目标进化算法 适应度函数 选择策略 收敛性 Multiobjective evolutionary algorithms, Fitness function,Selection strategy,Convergence
  • 相关文献

参考文献20

  • 1崔逊学著..多目标进化算法及其应用[M].北京:国防工业出版社,2006:331.
  • 2Schaffer J D.Multiple objective optimization with Vector evaluated genetic algorithms[C]//Grefenstette J J,eds.Proc.First Int.Conf.on Genetic Algorithms.Lawrence Erlbaum,1985:93-100. 被引量:1
  • 3Hajela P,Lin C Y.Genetic search strategies in muhicriterion optimal design[J].Structural Optimization,1992,4:99-107. 被引量:1
  • 4Ishibuchi H,Mutate T.Multi-objective Genetic Local Search Algorithm and its Application to Flowshop Scheduling[J].IEEE Trans.Syst.Man Cybern,C,Aug.1998,28:392-403. 被引量:1
  • 5Jaszkiewicz A.On the performance of Multiple-objec Genetic Local Search on the 0/1 Kna psack Problem-A Comparative Experiment[J].IEEE Transaction on Evolutionary Computation,2002,6:402-412. 被引量:1
  • 6Fonseca C M,Fleming P J.Genetic algorithms for Multiobjective optimization:Formulation,discussion and generalization[C]//Proceedings of the 5th International Conference on Genetic Algorithms.San Mateo,California,1993. 被引量:1
  • 7Srinivas N,Deb K.Multiobjective optimization using nondomihated sorting in genetic algorithms[R].Dept.Mechanical Engineering,Kanput,India,1993. 被引量:1
  • 8Deb K,Agrawal S,Pratap A,et al,A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA II[M].Parallel Problem Solving from Nature(PPSN VI),Berlin,2000. 被引量:1
  • 9Horn J,Nafpliotis N,Goldberg D E.A niched Pareto genetic algorithm for multiobjective optimization[C]//IEEE World Congress on Computation.Piscataway,NJ,1994. 被引量:1
  • 10Horn,Jeffrey,Nafpliotis N.Muhiobjective Optimization using the Niched Pareto Genetic Algorithm[R].IlliGAL Report 93005.University of Illinois at Urbane-Champaign,Urbane,Illinois,USA,1993. 被引量:1

二级参考文献21

  • 1[1]Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 1995, 3(1):1-16 被引量:1
  • 2[2]Osyczka A. Multicriteria optimization for engineering design. In: Gero J S ed. Design Optimization. Academic Press, 1985. 193-227 被引量:1
  • 3[3]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proc 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, 1985. 93-100 被引量:1
  • 4[4]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proc 5th International Conference on Genetic Algorithms, 1993. 416-423 被引量:1
  • 5[5]Roy B. How outranking relation help multiple criteria decision making. In:Cochrane J L, Zeleny M eds. Multiple Criteria Decision Making. South Carolina: University of South Carolina Press, 1973. 179-201 被引量:1
  • 6[6]van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithm test suites. In: Proc the 1999 ACM Symposium on Applied Computing, San Antonio, Texas, 1999. 351-357 被引量:1
  • 7[7]Thomas Back. Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996 被引量:1
  • 8[8]van Veldhuizen D A, Lamont G B. Evolutionary computation and convergence to a pare to front. In Koza J R ed. Late Breaking Papers at the Genetic Programming 1998 Conference. California: Stanford University, 1998. 221-228 被引量:1
  • 9Van Veldhuizen DA, Lamont GB. Multi-Objective evolutionary algorithms: Analyzing the State-of-the-Art. IEEE Trans. on Evolutionary Computation, 2000,8(2): 125-147. 被引量:1
  • 10Coello CAC. List of Reference on Evolutionary Multi-objective Optimization. http://www.lania.mx/~ccoello/EMOO/EMOObib.html. 被引量:1

共引文献56

同被引文献28

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部