期刊文献+

基于自适应性粒子滤波器的目标追踪 被引量:2

Object Tracking Based on Adaptive Particle Filter
下载PDF
导出
摘要 基于蒙特卡洛模拟的粒子滤波算法被广泛地应用于目标追踪领域。传统的粒子滤波算法在其追踪过程中所使用的粒子数通常是固定不变的,而在实际应用中,这会使算法缺乏高效性。针对这个问题,提出了一种自适应性粒子滤波器,它可以根据实际调整算法运行过程中使用的粒子数目,以使算法在保持对目标进行有效追踪的同时节省计算资源。仿真结果显示了算法的高效性。 As an efficient algorithms particle filter has been widely used in the area of object tracking. Normally number of particles being used in the algorithm is given as a constant which would somewhat make the algorithm unstable and inaccurate. As that an adaptive particle filter is proposed, this motion model and particle number can change adaptively according to the object's moving state. And the simulation shows that our algorithm is very effective when used in the tracking program.
机构地区 厦门大学物理系
出处 《舰船电子工程》 2009年第9期132-134,204,共4页 Ship Electronic Engineering
关键词 粒子滤波器 追踪 自适应性 particle filter, object tracking, adaptively
  • 相关文献

参考文献7

  • 1A Doucet, N J Gordon, V Krishnamurthy. Particle Filters for State Estimation of Jump Markov Linear Systems[J]. IEEE Trans on Signal Processing, 2001, 49(3):613-624. 被引量:1
  • 2Shaohua Kevin Zhou. Visual Tracking and Recognition Using Appearance Adaptive Model in Particle Filters [C]. Student Member, IEEE, Rama Chellappa, Fellow, IEEE, and Baback Moghaddam. 被引量:1
  • 3江宝安,卢焕章.粒子滤波器及其在目标跟踪中的应用[J].雷达科学与技术,2003,1(3):170-174. 被引量:41
  • 4Yang Yang, Tianwen Zhang. Automatic tracking of moving target in natural environment[D]. Harbin Institute of Technology, 1998:42-65. 被引量:1
  • 5D. Avitzour. Stochastic simulation Bayesian approach to multitarget tracking[C]. Proc. Inst. Elect. Eng., Radar, Sonar Navigat. , 1995,142(2). 被引量:1
  • 6Singhal. S. WuL. Training feed-forward networks with the extended Kalman algorithm[C]. Proc ICASSP, 1989. 被引量:1
  • 7Doucet, N. de Freitas, N. Gordon. Sequential Monte Carlo Methods in Praetiee[M]. Springer-Verlag, New York, 2001. 被引量:1

二级参考文献32

共引文献40

同被引文献41

引证文献2

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部