期刊文献+

分形布朗曲面构造算法研究 被引量:1

Research on Algorithm of Fractal Brown Surface Construction
下载PDF
导出
摘要 分形布朗运动是描述自然景物分形特征最有效的数学模型之一.以分形布朗运动为基础来构造分形图像可以较好地体现出具有复杂特征的自然景物的特点.提出了一种修正方差的随机中点继承增加算法,并使用该方法进行了模拟.模拟结果表明该算法能够较精确地生成FBM图像.与随机中点位移算法相比,修正方差的随机中点继承增加算法只增加了有限的偏移计算即可达到较高的精度,是一种有效地分形图形生成算法. The fractal Brownian motion (FBM) is one of the most effective mathematics models for describing fractal features of natural scenery. Based on the fractal Brownian motion, to construct a fractal image can better incarnate the features of complex characters of the natural scenery. The variance corrected successive random additions algorithm (CSRA) is pro- posed and used to simulate in this paper. The result of the simulation shows that the algorithm can generate the FBM image considerably precise. Compared with the algorithm of random midpoint displacement, the algorithm of CSRA can achieve higher precision, only adding limited biased calculation. So the algorithm of CSRA is an effective algorithm to generate fractal graphic.
作者 吴伟民 于垚
出处 《青岛理工大学学报》 CAS 2009年第4期194-198,204,共6页 Journal of Qingdao University of Technology
关键词 修正方差的随机中点继承增加算法 分形布朗运动 分形插值 variance corrected successive random additions algorithm fractal Brown motion fractal interpolation
  • 相关文献

参考文献6

  • 1孙家广 杨长贵.计算机图形学[M].北京:清华大学出版社,1995.. 被引量:162
  • 2王倩,姚林,刘建强,曹兆军,任海舟.基于分形理论的混凝土裂缝对钢筋腐蚀影响的研究[J].青岛理工大学学报,2008,29(6):42-45. 被引量:4
  • 3王东升,曹磊.混沌、分形及其应用[M].合肥:中国科学技术出版社,1995:93-99. 被引量:11
  • 4Mandelbort B B, Van Ness J. Fractional Brownian Motion, Fractional Noises and Applications[J]. SIAM Review, 1968(10) : 422-437. 被引量:1
  • 5Liu Hui Hai,Bodvarsson Gudmundur S. A Corrected and Generalized Successive Random Additions Algorithm for Simulating Fractional Levy Motions[J]. Mathemattieal Geology,2004,36(3):361-378. 被引量:1
  • 6McGaughey D R,Aithen G J M. Statistical Analysis of Successive Random Additions for Generating Fractional Brownian Motion[J].Physical A, 2000,277:25-34. 被引量:1

二级参考文献3

共引文献174

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部