期刊文献+

Quantum Systems Connected by a Time-Dependent Canonical Transformation

Quantum Systems Connected by a Time-Dependent Canonical Transformation
下载PDF
导出
摘要 We study both classical and quantum relation between two Hamiltonian systems which are mutually connected by time-dependent canonical transformation. One is ordinary conservative system and the other is timedependent Hamiltonian system. The quantum unitary operator relevant to classical canonical transformation between the two systems are obtained through rigorous evaluation. With the aid of the unitary operator, we have derived quantum states of the time-dependent Hamiltonian system through transforming the quantum states of the conservative system. The invariant operators of the two systems are presented and the relation between them are addressed. We showed that there exist numerous Hamiltonians, which gives the same classical equation of motion. Though it is impossible to distinguish the systems described by these Hamiltonians within the realm of classical mechanics, they can be distinguishable quantum mechanically.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期416-420,共5页 理论物理通讯(英文版)
基金 Supported by the Korea Science and Engineering Foundation (KOSEF) Grant Funded by the Korea Government (MOST) under Grant No.F01-2007-000-10075-0
关键词 canonical transformation innumerable kind of Hamiltonians canonical quantization invariant operator unitary transformation 量子系统 哈密顿系统 时间依赖性 时变 保守系统 哈密顿描述 相互联系 正则变换
  • 相关文献

参考文献26

  • 1W. Dittrich and M. Reuter, Classical and Quantum Dynamics, Springer-Verlag, Berlin (1993). 被引量:1
  • 2D.C. Khandekar, S.V. Lawande, and K.V. Bhagwat, Path Integral Methods and Their Application, World Scientific, Singapore (1993). 被引量:1
  • 3T. Kashiwa, Y. Ohnuki, and M. Suzuki, Path Integral Methods, Oxford Science Publication, New York (1997). 被引量:1
  • 4M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1996). 被引量:1
  • 5D.F. Walls and G.J. Milburn, Quantum Optics, Springer, New York (1994). 被引量:1
  • 6M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000). 被引量:1
  • 7A.D, Zhu, S. Zhang, K.H. Yeon, and C.I. Um, J. Korean Phys. Soc. 52 (2008) 1. 被引量:1
  • 8B.R. Mollow and R.J. Glauber, Phys. Rev. 160 (1991) 1097. 被引量:1
  • 9M.V. Berry, Proc. R. Soc. Lond. Ser. A 392 (1984) 45. 被引量:1
  • 10P. Zanardi and M. Rasetti, Phys. Lett. A 264 (1999) 94. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部