摘要
图G的变换图G*xy以V(G)∪E(G)为其顶点集,x,y∈{+,-}·对任意的α,β∈V(G)∪E(G),α和β在图G*xy中邻接的条件如下:(ⅰ)α,β∈V(G)·(ⅱ)α,β∈E(G),x=+时当且仅当α和β在图G中相邻;x=-时当且仅当α和β在图G中不相邻·(ⅲ)α∈V(G),β∈E(G),y=+时当且仅当α和β在图G中关联;y=-时当且仅当α和β在图G中不关联·主要介绍了四类变换图,其中一个恰是中图M(G)的补图,并探讨了这些变换图的一些基本性质·
The transformation graph G^*xy of G is the graph with vertex set V(G) E(G), and x, y be two variables taking values + or -. For α, β∈V(G) ∪ E(G), α and β are adjacent in G^*xy if and only if one of the following holds: ( i ) α,β∈ V(G).(ii)α,β∈ E(G).α and β are adjacent in G if x = +;α and β are not adjacent in G if x = -. (iii) α∈ V(G),β∈ E(G). α and β are incident in G if y = + ; α and β are not incident in G if y = - . In this paper, we introduce four kinds of transformation graphs, one of which is the complement of middle graph M(G). We investigate some basic proper ties of these transformation graphs.
出处
《怀化学院学报》
2009年第8期10-13,共4页
Journal of Huaihua University
基金
江苏省研究生创新计划
江南大学青年基金(NO2008LQN008)
关键词
变换图
连通性
直径
正则性
transformation graph
connectedness
diameters
regularity