k-维格图的全染色
The total chromatic number of k-dimensional grids
摘要
图的全染色是点染色和边染色的推广,图的所有元素(顶点和边)都将染色且任相邻或关联的元素染色不同。全色数χT(G)=min{k|图G有k-全染色}。本文确定了k-维格图的全色数情况。
The total chromatic number ΧT (G) is the least and edges of a graph G such that no incident or adjacent color. This work determines the total chromatic number number of colors needed to color the vertices elements (vertices or deges) receive the same of k-dimensional grids Gn1×n2×…×xmk
出处
《河北省科学院学报》
CAS
2009年第3期1-2,12,共3页
Journal of The Hebei Academy of Sciences
关键词
全染色
全色数
格图
部分格图
k-维格图
Total colring
Total chromatic number
grid
k-dimensional grid
参考文献7
-
1A. Sanchez-Arroyo,Determining the total colouring number is NP-hard[J], Discrete Mathematics, 1989,78:315-319. 被引量:1
-
2C. N. Campos and C. P. de Mello, The total chromatic number of some bipartite graphs[J], Discrete Mathematics, 2005,22 : 557 -561. 被引量:1
-
3G. Chartrand and L. Lesniak, Graphs Digraphs. 3rd ed. 1996. 被引量:1
-
4Guillaume Fertin, On the oriented chromatic number of grids, Information Processing Letters,2004,85:261-266. 被引量:1
-
5H. P. Yap, Total colouring of graphs, Bulletion of the London Mathematical Society, 1989,21 : 159- 163. 被引量:1
-
6M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965. 被引量:1
-
7V. G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 1964,3,25-30. 被引量:1