期刊文献+

表面测量中高斯滤波器的B样条函数实现方法 被引量:2

Implementation Approach for Gaussian Filter in Surface Measurement Applying B-spline Function
下载PDF
导出
摘要 提出一种新的高斯滤波器B样条函数实现方法。在B样条函数理论基础上,通过对变分原则引入约束条件的方法,并结合小尺度高斯滤波器级联的特性,得出了高斯滤波器的逼近滤波器。其与高斯滤波器的最大幅度偏差小于1%,并且也具有零相移的特性。在相应的滤波算法中,包括了一级零相移滤波和一级加权滤波,只进行二次循环,算法结构简单,计算效率高。对实际表面测量数据进行应用试验,能够满足高斯滤波器实现方法高精度、高效率的要求。 A new implementation approach for Gaussian filter is presented. Based on the theory of B-spline function, the variational principle with constraint condition and the cascade characteristic of small-scale Gaussian filter, the approximation filter of Gaussian filter is obtained, and its maximum amplitude deviation from Gaussian filter is less than 1%, and it also has the zero-phase-shift characteristic. The algorithm for the approximation filter consists of the zero-phase-shift filtering and the weighing filtering, and only carries out two times of cycle. The algorithm teatures simple structure and high calculation efficiency. The approximation filter is also efficient and accurate for the implementation of Gaussian filter in the application of surface roughness measurement.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期238-242,共5页 Journal of Mechanical Engineering
基金 2008年哈尔滨理工大学青年科学基金资助项目(2008XQJZ024)
关键词 高斯滤波器 B样条函数 中线 表面粗糙度 Gaussian filter B-spline function Mean line Surface roughness
  • 相关文献

参考文献9

  • 1ISO 11562-1996. Geometrical product specifications (GPS) -surface texture: Profile method-metrological characteristics of phase correct filters[S]. Geneva: International Organization for Standardization, 1996. 被引量:1
  • 2SCHOENBERG I J. Spline functions and the problem of graduation[J]. Proc. Nat. Acad. Sci., 1964, 52: 947-950. 被引量:1
  • 3JOHANNES P F, D'HAEYER. Gaussian filtering of images: A regularization approach[J]. Signal Processing, 1989, 18: 169-181. 被引量:1
  • 4MICHAEL U, AKRAM A, MURRAY E. B-spline signal processing: Part Ⅱ-Efficient design and applications[J]. IEEE Transactions on Signal Processing, 1993, 41(2): 834-848. 被引量:1
  • 5YUAN Y B, QIANG X F, SONG J F, et al. A fast algorithm for determining the Gaussian filtered mean line in surface metrology[J]. Prec. Eng., 2000, 24: 62-69. 被引量:1
  • 6MICHAEL K. Form filtering by splines[J]. Measurement, 1996, 18(1): 9-15. 被引量:1
  • 7MICHAEL K. Discrete L-spline filtering in roundness measurements[J]. Measurement, 1996, 18(2): 129-138. 被引量:1
  • 8RAJA J, MURALIKRISHNAN B, FU S Y. Recent advances in separation of roughness waviness and form[J]. Precision Engineering, 2002, 26: 222-235. 被引量:1
  • 9程佩青编著..数字信号处理教程 第2版[M].北京:清华大学出版社,2001:485.

同被引文献15

  • 1王玉,高大路,廖明夫,张淑艳.焊接缺陷信号的小波去噪方法研究[J].西北工业大学学报,2005,23(4):496-499. 被引量:6
  • 2ISO 5436-1: Geometrical product specifications (GPS) surface texture : Profile method ; Measurement standards Part 1: Material measures[S]. England: International Organization for Standardization, 2000. 被引量:1
  • 3ZENG W, JIANG X, SCOTT P J, et al. Diffusion filtration for the evaluation of MEMS surface[C]// 10th International Symposium on Measurement Technology and Intelligent Instruments, Kaist, Deajeon South Korea, 2011. 被引量:1
  • 4PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(9): 629-639. 被引量:1
  • 5KINGSBURY N. Complex wavelets for shift invariant analysis and filtering of signals[J]. Appl. Comput. Harmonic Anal., 2001, 10(3): 234-253. 被引量:1
  • 6DURAND S, FROMENT J. Reconstruction of wavelet coefficients using total variation minimization[J]. SlAM J Sci. Comput., 2003, 24(5): 1754-1767. 被引量:1
  • 7MA J W, FENN M. Combined complex ridgelet shrinkage and total variation minimization[J]. Society for Industrial and Applied Mathematics, 2006, 28(3) .. 984-1000. 被引量:1
  • 8DOBSON D C, VOGEL C R. Convergence of an iterative method for total variation denoising[J]. SIAM J. Numer. Anal., 1997, 34.- 1779-1791. 被引量:1
  • 9CHAN T, ZHOU H. Total variation improved wavelet thresholding in image compression[C]//Proc. Int. Conf. Image Process, 2000. Piscataway: IEEE, 2000: 391-394. 被引量:1
  • 10YI D. An iterative scheme for total variation-based image denoising[J]. Journal of Scientific Computing, 2014, 58(3): 648-671. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部