期刊文献+

基于相空间重构的半导体制造系统日产出预测 被引量:3

Semiconductor Manufacturing System Daily Output Prediction Based on Phase Space Reconstruction
下载PDF
导出
摘要 半导体制造系统的生产作业计划与调度优化困难、可行性较低的现状,对半导体制造系统的日产出预测提出了需求。在对预测研究现状进行分析的基础上,针对半导体制造系统的日产出时间序列体现的非线性的确定性而又类似随机的特点,提出一种基于混沌相空间重构的蚂蚁—神经网络模型的预测方法。混沌相空间重构理论用于日产出时间序列的重构;神经网络用于日产出预测模型的构建;蚂蚁算法用于神经网络预测模型的权值和阈值参数的训练。通过某企业的实际生产数据进行测试,并与传统的预测方法比较,证明了该预测方法的有效性。 In order to manage and control semiconductor wafer fabrication system (SWFS) more effectively, the daily output prediction data of wafer fabrication are often used in the planning and scheduling of SWFS. Because of nonlinear certainty and stochastic character of the daily output time series, an artificial neural network prediction method based on phase space reconstruction and ant colony optimization is proposed, in which the chaos phase space reconstruction theory is used to reconstruct the daily output time serials, the neural network is used to construct the daily output prediction model, the ant algorithm is used to train the weight and bias values of the neural network prediction model. Through testing with factory production data and comparing with traditional prediction methods, the effectiveness of the the proposed prediction method is proved.
作者 吴立辉 张洁
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期176-181,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50575137)
关键词 日产出预测 相空间重构 神经网络 蚂蚁算法 Daily output prediction Phase space reconstruction Neural network Ant algorithm
  • 相关文献

参考文献10

  • 1CHEN T. An intelligent hybrid system for wafer lot output time prediction[J]. Advanced Engineering Informatics, 2007, 27(1): 55-65. 被引量:1
  • 2SHIMADA Y, SAKURAI K. A new accurate yield prediction method for system-LSI embedded memories [J]. IEEE Transactions on Semiconductor Manufacturing, 2003, 16(3): 436-445. 被引量:1
  • 3田铮.动态数据处理的理论与方法-时间序列分析[M].西安:西北大学出版社,2001. 被引量:1
  • 4YANG Y W, LIU G Z. Multivariate time series prediction based on neural networks applied to stock market[C]// Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics, October 7-10, 2001, Tucson, USA. Piscataway, NJ: IEEE, 2001: 2 680-2 683. 被引量:1
  • 5PRASAD K D V, YARLAGADDA. Prediction of die casting process parameters by using an artificial neural network model for zinc alloys[J]. International Journal of Production Research, 2000, 38(1): 119-139. 被引量:1
  • 6HUANG C L, HUANG Y H, CHANG T Y, et al. The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks[J]. International Journal of Production Research, 1999, 37(6): 1 387-1 402. 被引量:1
  • 7吕金虎 ... ..混沌时间序列分析及其应用[M],2002.
  • 8ZHANG S B, LIU Z M. Neural network training using ant algorithm in ATM traffic control[C]//Proceedings of IEEE International Symposium on Circuits and Systems, May 6-9, 2001, Sydney, Australia. Piscataway, NJ.. IEEE, 2001: 157-160. 被引量:1
  • 9LI J B, CHUNG Y K. A novel back propagation neural network training algorithm designed by ant colony optimization[C]// Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, August 15-17, 2005, Dalian Xinghai Convention & Exhibition Center, Dalian, China. Piscataway, NJ: IEEE, 2005: 1-5. 被引量:1
  • 10傅惠民,王治华.广义时变ARMA模型参数函数的确定方法[J].机械强度,2004,26(6):636-641. 被引量:13

二级参考文献15

共引文献12

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部