期刊文献+

3自由度并联机器人的运动学与动力学分析 被引量:73

Kinematic and Dynamic Analysis of a Three-degree-of-freedom Parallel Manipulator
下载PDF
导出
摘要 对一种空间3自由度并联机器人(3-RRS并联机器人)进行运动学和动力学分析。此并联机器人的机构由一个动平台和一个静平台通过3个同样的转动副—转动副—球面副的支链组成。完全描述此并联机器人动平台的位置和姿态需要6个变量,即平台上一参考点的3个位移和3个转角。由于此并联机器人拥有2个转动自由度和1个移动自由度,所以,在动平台的6个位姿变量中只有3个变量是独立的。首先,推导此种并联机器人动平台的6个位姿参数之间的约束关系,给出这些变量之间的解析表达式。然后,基于Lagrange方程建立此并联机器人的动力学模型。在此基础上,通过算例分析驱动构件角速度、驱动力/力矩和能耗的变化规律。这些内容为进一步研究此种空间并联机器人的动态性能、机构优化设计和系统控制等都有非常重要的意义。 The primary goal is the kinematic and dynamic analysis of a spatial 3 degree-of-freedom parallel manipulator (a 3-RRS parallel manipulator). The architecture of the mechanism is comprised of a moving platform attached to a fixed platform through three identical revolute-revolute-spherical jointed serial linkages. A complete description of the position and orientation of the moving platform with respect to the reference frame requires six variables, i.e., the three Cartesian coordinates of a reference point on the moving platform and three angles. However, since the parallel manipulator has two degrees of orientation freedom and one degree of translatory freedom, which implies that only three variables can be specified independently. Firstly, the constraint equations describing the inter-relationship between the six motion coordinates of the moving platform are derived. Closed form solutions to the constraint equations are found which provide the constrained variables as functions of the unconstrained (specified) variables. Some significant conclusions are drawn from the closed form solutions. Then, the dynamic equations of the parallel manipulator are presented on the basis of Lagrange equation. Based on the dynamic model, the angular velocities, the driving force or torque and consumed energy of the actuators are analyzed through an example. The analysis provides necessary information for dynamic performance analysis, optimal design and control of the parallel mechanism.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第8期11-17,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(50575002 60705036 50875002) 北京市教委科技发展计划(KM200610005003) 北京市自然科学基金(3062004)资助项目
关键词 并联机器人 运动学 动力学 LAGRANGE方程 位姿 Parallel manipulator Kinematics Dynamics Lagrange equation Position and orientation
  • 相关文献

参考文献11

  • 1HUNT K H. Structural kinematic of in-parallel-actuated robot arms[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1983(105): 705-712. 被引量:1
  • 2LEE K M, SHAH D K. Kinematic analysis of a three- degrees-of-freedom in-parallel actuated manipulator[J]. IEEE Journal of Robotics and Automation, 1988, 4(3): 354-360. 被引量:1
  • 3LEE K M, SHAH D K. Dynamic analysis of a three- degrees-of-freedom in-parallel actuated manipulator[J]. IEEE Journal of Robotics and Automation, 1988, 4(3): 361-367. 被引量:1
  • 4GOSSELIN C, ANGELES J. The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1988, 110(3): 35-41. 被引量:1
  • 5FANG Yuefa, HUANG Zhen. Kinematic of a three- degree-freedom in-parallel actuated manipulator mechanism[J]. Mechanism and Machine Theory, 1997, 32(7): 789-796. 被引量:1
  • 6HUANG Zhen, FANG Yuefa. Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanisms[J]. Mechanism and Machine Theory, 1996, 31(8): 1 009-1 018. 被引量:1
  • 7FANG Hairong, FANG Yuefa, HU Ming. Forward position analysis of a novel three DOF parallel mechanism [C]// Proceedings of the 11th World Congress in Mechanism and Machine Science, April 1-4, 2004, Tianjin, China. Beijing: China Machinery Press, 2004: 154-157. 被引量:1
  • 8李剑锋.并联机床曲面加工的刀轨规划及动力学建模研究[D].北京:清华大学,2001. 被引量:1
  • 9CARRETERO J A, PODHORODESKI R P, NAHON M A, et al. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator[J]. Journal of Mechanical Design, 2000, 122(3): 17-24. 被引量:1
  • 10WANG Jiegao, GOSSELIN C M. Static salancing of spatial three-degree-of-freedom parallel mechanisms[J]. Mechanism and Machine Theory, 1999, 34(3): 437-452. 被引量:1

同被引文献623

引证文献73

二级引证文献331

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部