摘要
对一种空间3自由度并联机器人(3-RRS并联机器人)进行运动学和动力学分析。此并联机器人的机构由一个动平台和一个静平台通过3个同样的转动副—转动副—球面副的支链组成。完全描述此并联机器人动平台的位置和姿态需要6个变量,即平台上一参考点的3个位移和3个转角。由于此并联机器人拥有2个转动自由度和1个移动自由度,所以,在动平台的6个位姿变量中只有3个变量是独立的。首先,推导此种并联机器人动平台的6个位姿参数之间的约束关系,给出这些变量之间的解析表达式。然后,基于Lagrange方程建立此并联机器人的动力学模型。在此基础上,通过算例分析驱动构件角速度、驱动力/力矩和能耗的变化规律。这些内容为进一步研究此种空间并联机器人的动态性能、机构优化设计和系统控制等都有非常重要的意义。
The primary goal is the kinematic and dynamic analysis of a spatial 3 degree-of-freedom parallel manipulator (a 3-RRS parallel manipulator). The architecture of the mechanism is comprised of a moving platform attached to a fixed platform through three identical revolute-revolute-spherical jointed serial linkages. A complete description of the position and orientation of the moving platform with respect to the reference frame requires six variables, i.e., the three Cartesian coordinates of a reference point on the moving platform and three angles. However, since the parallel manipulator has two degrees of orientation freedom and one degree of translatory freedom, which implies that only three variables can be specified independently. Firstly, the constraint equations describing the inter-relationship between the six motion coordinates of the moving platform are derived. Closed form solutions to the constraint equations are found which provide the constrained variables as functions of the unconstrained (specified) variables. Some significant conclusions are drawn from the closed form solutions. Then, the dynamic equations of the parallel manipulator are presented on the basis of Lagrange equation. Based on the dynamic model, the angular velocities, the driving force or torque and consumed energy of the actuators are analyzed through an example. The analysis provides necessary information for dynamic performance analysis, optimal design and control of the parallel mechanism.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2009年第8期11-17,共7页
Journal of Mechanical Engineering
基金
国家自然科学基金(50575002
60705036
50875002)
北京市教委科技发展计划(KM200610005003)
北京市自然科学基金(3062004)资助项目
关键词
并联机器人
运动学
动力学
LAGRANGE方程
位姿
Parallel manipulator Kinematics Dynamics Lagrange equation Position and orientation