期刊文献+

一种染料敏化太阳电池用新型对电极的研究 被引量:3

原文传递
导出
摘要 介绍了一种新型染料敏化太阳电池用对电极结构,由基底材料、一层Al和其上的Pt构成.该新型对电极可以显著提高染料敏化电池的光电转换效率,由通常的3.46%提高到7.07%(AM1.5).对该新型对电极的电学、光学性能以及耐腐蚀特性等进行了研究,分析了其优缺点,并提出了一系列改进方案.
出处 《中国科学(E辑)》 EI CSCD 北大核心 2009年第8期1419-1423,共5页 Science in China(Series E)
基金 天津市重点基金(批准号:06YFJZJC01700) 国家重点基础研究发展计划("973"计划)(批准号:2006CB202602 2006CB202603)项目资助
  • 相关文献

参考文献9

二级参考文献34

  • 1马俊,郭里辉.染料敏化太阳电池中敏化剂光吸收性能的探讨[J].太阳能学报,1995,16(3):253-256. 被引量:4
  • 2曾隆月,戴松元,王孔嘉,孔凡太,胡林华.染料敏化纳米薄膜太阳电池TiO_2薄膜的研究进展[J].太阳能学报,2005,26(4):589-596. 被引量:8
  • 3姜春华,胡宇宁,万发荣,龙毅.染料敏化纳米晶体TiO_2太阳能电池的对电极结构[J].感光科学与光化学,2006,24(5):325-334. 被引量:6
  • 4Papageorgiou N, Maier W F, Gratzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic medial [J].J Electrochem Soc,1997, 144: 876-884. 被引量:1
  • 5Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J]. Electrochimica Acta, 2001, 46:3457-3466. 被引量:1
  • 6Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J]. Sol Ener Mater & Sol Cell, 1996, 44: 99-117. 被引量:1
  • 7Imoto K, Takahashi K, Yamaguchi T, et al. High-performance carbon counter electrode for dye-sensitized solar cells[J]. Solar Energy & Solar Cells, 2003, 79: 459-469. 被引量:1
  • 8Saito Y, Kitamura T, Wada Y, et al. Poly(3,4-ethylened-ioxythiophene) as a hole conductor in solid state dye sensitized solar cells[j]. Synthetic Metals, 2002, 131 (1-3):185-187. 被引量:1
  • 9Mathew X, Thompson G W, Thompson V P, et al. Development of CdTe thin films on flexible substrates-a review[J]. Sol Ener Mater & Sol Cell, 2003, 76 : 293-303. 被引量:1
  • 10Lindstrom H, Holmberg A, Hagfeldt A, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature[J]. J Photochem & Photobio A: Chemistry,2001, 145: 107-112. 被引量:1

共引文献24

同被引文献60

  • 1栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004,49(11):1011-1019. 被引量:25
  • 2戴松元,肖尚锋,史成武,陈双宏,黄阳,孔凡太,胡林华,潘旭,隋毅峰,翁坚,王孔嘉.染料敏化纳米薄膜太阳电池电解质的优化[J].高等学校化学学报,2005,26(3):518-521. 被引量:10
  • 3Chen X H, Pan Y Z, Chen J C. Performance and evaluation of a fuel cell-thermoelectric generator hybrid system. Fuel Cell, 2010, 10: 1164-1170. 被引量:1
  • 4Kuo J K, Hwang J J, Lin C H. Performance analysis of a stationary fuel cell thermoelectric cogeneration system. Fuel Cell, 2012, 10: 1104-1114. 被引量:1
  • 5Chan S, Ho H, Tian Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. J Power Sources, 2002, 109: 111-120. 被引量:1
  • 6Li Y, Weng Y. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels. J Power Sources, 2011, 196: 3824-3835. 被引量:1
  • 7Wu X, Huang Q, Zhu X. Thermal modeling of a solid oxide fuel cell and micro gas turbine power system based on modified LS-SVM. Int J Hydrogen Energy, 2011, 36: 885-892. 被引量:1
  • 8Rizzoni G, Guzzella L, Baumann B M. Unified modeling of hybrid electric vehicle drivetrains. IEEE-ASME T Mech, 1999, 4: 246-257. 被引量:1
  • 9Burer M, Tanaka K, Favrat D, et al. Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers. Energy, 2003, 28: 497-518. 被引量:1
  • 10Cheddie D. Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Int J Hydrogen Energy, 2011, 36: 1702-1709. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部