期刊文献+

高阶变系数线性微分方程的一些新的可积类型 被引量:4

Some New Integrable Types of Higher Order Linear Ordinary Differential Equations with Variable Coefficients
原文传递
导出
摘要 借助双变换—未知函数的变换和自变量的变换,将几类高阶变系数线性微分方程化为相应的常系数线性微分方程,从而顺利求得它们的通解,得到了变系数线性微分方程新的可积类型,所得结果极大地推广了著名的Euler方程及前人的一些的工作,并给出了相应的实例加以佐证. By means of double transformation--linear transformation of unknown function and self-variable transformation, several classes of higher order linear differential equations with variable coefficients are turned into linear differential equations with constant coefficients. Thus, general solutions of equations mentioned above can be obtained, meanwhile, the famous Euler equations and some predecessorls results on this issue are expanded.
作者 章联生
出处 《数学的实践与认识》 CSCD 北大核心 2009年第15期229-234,共6页 Mathematics in Practice and Theory
关键词 变系数线性微分方程 双变换 常系数线性微分方程 通解 linear differential equations with variable coefficients double transformation linear differential equations with constant coefficients general solutions
  • 相关文献

参考文献7

二级参考文献3

  • 1帅杰辉,张学元.一阶非线性微分方程若干新的可积类型[J]湖南数学年刊,1988(Z1). 被引量:1
  • 2李鸿祥.常微分方程的一些新的可积类型[J]数学的实践与认识,1980(01). 被引量:1
  • 3[德]E·卡姆克 著,张鸿林.常微分方程手册[M]科学出版社,1977. 被引量:1

共引文献78

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部