期刊文献+

一种求解有限元问题结点平衡方程的快速方法

A speedy solution of the nodal equilibrium equations in the finite-element problems
下载PDF
导出
摘要 目前随着工程实际问题复杂程度的增加及分析的要求,特别是材料非线性分析的引入,尽管计算机的运算速度、内存、外存容量等不断提高,但并不能完全满足大规模计算的需要,更快、更节省存贮空间的算法一直是有限元法分析过程中的一项核心技术要求。本文针对一些结点及单元均规律化地排列的有限元问题,提出可以透过其相邻结点的关系记录结点平衡方程中系数矩阵的非零元素,无需再像等带宽存贮那样去记录带宽内大量的零元素。此方法可以大大地减少系数矩阵元素的存贮量,从而可以提高计算机读取数据的速度及改善利用迭代法求解的效率。 With the constant development of finite element method, it is widely used in almost every field of engineering, and has become a powerful technique in solving complex civil engineering. With the increment of complexness and scale in finite element method, the number of unknowns is as large as 10^4-10^6, it brings the difficulties in solving stiffness equation by the traditional half-bandwidth storage scheme, one-dimensional various-bandwidth method, or frontal method. The main difficulties exist in the matrix storage and solving CPU time. Although the calculation speed, the volume of EMS memory and external storage of computer increase constantly, the improvement of computer performance doesn' t always keep pace with the increasing requirement of large-scale calculation for more and more complex problem in practical engineering, especially for the nonlinear problem. The algorithm with high efficiency and using less EMS memory is a key technique in finite element method analysis and also an objective of computational mechanics. In this paper an approach is put forward for the finite element problem with regular discretization of elements, in which only the nonzero elements in the global stiffness matrix through the adjacent nodal relations are recorded, unlike in the half-bandwidth storage scheme, a lot of zero elements in the bandwidth of the stiffness matrix are also recorded, so that the large quantity work of storing the coefficients of the matrix can substantially be reduced and the speed of reading computer data information can be increased, giving better improvement on the efficiency of solution by the iteration method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第4期518-522,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50578066)资助项目
关键词 系数矩阵 单元最大结点差 结点平衡方程 半等带宽 coefficients matrix maximum difference of the node number in a element nodal equilibrium equations symmetric half band-width
  • 相关文献

参考文献9

  • 1廖红建,王铁行等编著..岩土工程数值分析[M].北京:机械工业出版社,2006:274.
  • 2Geotechnical Control Office. Review of Design Methods for Excavations [M]. No. 1/90. Hong Kong: GCO Publication. 1990. 被引量:1
  • 3DARYL L Logan.有限元方法基础教程(第3版)[M].伍义生.吴永礼.等.译.北京:电子工业出版社,2003. 被引量:1
  • 4朱伯芳著..有限单元法原理与应用 第2版[M].北京:中国水利水电出版社,1979:607.
  • 5陈璞,孙树立,袁明武.有限元分析快速解法[J].力学学报,2002,34(2):216-222. 被引量:16
  • 6郭乙木 ... ..线性与非线性有限元及其应用[M],2004.
  • 7王勖成,邵敏编著..有限单元法基本原理和数值方法 第2版[M].北京:清华大学出版社,1997:568.
  • 8潘树来.深基坑开挖全过程设计的数值模拟[D].华侨大学,2006:38-39,53. 被引量:1
  • 9金一庆,陈越编著..数值方法[M].北京:机械工业出版社,2000:262.

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部