期刊文献+

基于锥模型的非单调信赖域算法 被引量:1

A Nonmonotonic Trust Region Method the Based on the Conic Model
原文传递
导出
摘要 对于无约束最优化问题本文提出了一类基于锥模型的非单调信赖域算法。此算法中的信赖域子问题是采用比二次模型更一般的锥模型,并结合非单调技术,克服了用于产生非单调性的参考函数值依赖于某一正整数M的缺点。当试探步不被接受时,采用非单调线搜索,减少了计算量。在适当的条件下,证明了该算法的全局收敛性和Q-二阶收敛性。数值试验证实该算法是有效的。 In this paper, a nonmonotonic trust region algorithm based on the conic model for unconstrained optimization is presented. In this algorithm, the subproblem of trust region applys the conic model, which is more general than quadratic model. With the nonmonotonic technique, our algorithm overcomes a shortcoming, i.e. the reference function value used to generate non-monotonicity relys on some positive integer M. When the trial step is not accepted, we employ a nonmonotomic line search to reduce the cost. Under mild conditions, we prove the global convergence and Q-quadratic convergence of the algorithm. Numerical results show its efficiency.
出处 《数学进展》 CSCD 北大核心 2009年第4期503-511,共9页 Advances in Mathematics(China)
基金 国家自然科学基金(No.60472071) 北京市教委科研基金(No.KM200710028001).
关键词 无约束最优化 非单调信赖域方法 锥模型 非单调线搜索 全局收敛性 unconstrained optimization nonmonotonic trust-region method conic model nonmonotonic line search global convergence
  • 相关文献

参考文献3

二级参考文献13

  • 1刘光辉,彭积明.一类非单调算法的收敛性质[J].计算数学,1994,16(1):65-71. 被引量:7
  • 2柯小伍,韩继业.一类新的信赖域算法的全局收敛性[J].应用数学学报,1995,18(4):608-615. 被引量:31
  • 3莫降涛,刘春燕,颜世翠.带有固定步长的非单调信赖域方法[J].曲阜师范大学学报(自然科学版),2006,32(3):30-34. 被引量:11
  • 4Deng N Y,JOTA,1993年,76卷,259页 被引量:1
  • 5Nocedal, J., Yuan Y.X., Combining trust region and line search techniques, Technical Report, NAM06, Dept of Computer Science, Northwestern University, Illinois, USA, 1991. 被引量:1
  • 6Nocedal, J., Yuan Y.X., Combining trust region and line search techniques, Advances in Nonlinear Programming, 1998~ 153-175. 被引量:1
  • 7Michael, Gertz, E., A quasi-Newton trust-region method, Mathematical Programming, 2004, 100(3): 447- 470. 被引量:1
  • 8Deng N.Y., Xiao Y., Zhou F.J., A nonmontonic trust region algorithm, Journal of optimization Theory and Applications, 1993, 76(2): 259-285. 被引量:1
  • 9Toint, P., A nonmonotone trust region algorithm for nonlinear optimization subject to convex constraints, Mathematical Progromming, 1997, 77(1): 69-94. 被引量:1
  • 10Jorge, J., More, Burton, S., Garb ow, Kenneth, E., Hillstrom, Testing unconstrained optimization software, ACM Transactions on Mathematical Software, 1981, 7(1): 17-41. 被引量:1

共引文献65

同被引文献20

  • 1章祥荪,张菊亮,廖立志.An adaptive trust region method and its convergence[J].Science China Mathematics,2002,45(5):620-631. 被引量:10
  • 2刘光辉,彭积明.一类非单调算法的收敛性质[J].计算数学,1994,16(1):65-71. 被引量:7
  • 3诸梅芳,薛毅,张凤圣.锥模型的拟NEWTON型信赖域方法[J].高等学校计算数学学报,1995,17(1):36-47. 被引量:30
  • 4Shi Z J,Shen J.New Inexact Line Search for Unconstrained Optimization. Journal of Optimization Theory and Ap-plications . 2005 被引量:1
  • 5Ni Q.Optimality Conditions for Trust-region Subproblems Involving a Conic Model. SIAM Journal on Optimization . 2005 被引量:1
  • 6Schnabel R B,Eskow E.A new Modified Cholesky Factorization. SIAM Journal on Scientific and Statistical Computing . 1990 被引量:1
  • 7Fan J Y,Yuan Y X.A new Trust Region Algorithm with Trust Region Radius Converging to Zero. Proceeding ofthe 5th International Conferences on Optimization:Techniques and Applications . 2001 被引量:1
  • 8SANG Z Y,SUN Q Y.A new non-monotone self-adap-tive trust region method with line search based on asimple subproblem model. Journal of Computation-al and Applied Mathematics . 2009 被引量:1
  • 9Sorensen D C.The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM Journal on Numerical Analysis . 1980 被引量:1
  • 10Davidon WC.Conic approximations and collinear scalings for optimizers. SIAM Journal on Numerical Analysis . 1980 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部