摘要
本文研究M/M/1/N多重工作休假排队系统,简记为M/M/1/N(WV)。利用马尔科夫过程理论和矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的消失概率等性能指标。最后通过数值例子我们分析了系统的参数,休假时的工作率μν和休假率θ对平均队长的影响。
In this paper, we consider an M/M/1/N queuing system with multiple working vacations, and we have M/M/1/N (WV) in short. First, we derive the matrix form solution of the steady-state probability by the Markfov process method and the matrix solution method. Some performance measures of the system such as the expected number of customers in the system or in the queue and the loss probability of the customer are also presented. Finally we investigate the effect of the parameters of system, such as the vacation service rate and the vacation rate on the expected queue length by numerical examples.
出处
《运筹与管理》
CSCD
北大核心
2009年第4期54-59,共6页
Operations Research and Management Science
基金
国家自然科学基金资助项目(10671170)
关键词
排队系统
稳态概率
性能指标
马尔科夫过程
矩阵解法
多重工作休假
queuing system
steady-state probability
performance measures
markfov process
matrix solution method
multiple working vacations.