期刊文献+

两阶段特殊结构混合0-1规划的分解算法

A Decomposition Method for Solving Two-Stage Mixed 0-1 Programming with Special Structure
下载PDF
导出
摘要 本文介绍了一种用于求解具有特殊结构的两阶段混合0-1规划问题的原始-对偶分解算法,并以CPLEX软件作为核心求解器将算法实现。该算法将原问题分解成两个相对简单的子问题,较传统分解算法有更平衡的分解结构和收敛性。实验数据表明,该算法在求解较大规模、稀疏度较大、耦合度较大的复杂两阶段下三角结构混合0-1规划问题时,相比CPLEX提供的分枝剪枝法,在时间效率上有明显提高。算法最后通过固定0-1变量的取值可以得到满足管理精度要求的近似最优解。 This paper introduces a primal-dual decomposition method to solve two-stage mixed 0-1 programming problems with a special structure. After deduction and discussion about the algorithm, it' s implemented with CPLEX 9.0. The new method divides the original problem into two simple subproblems and has a more balanced structure and rapid convergence speed than traditional decomposition methods. Computational tests show that our approach has higher time efficiency than branch-and-cut algorithm supplied by CPLEX in solving large-scale twostage mixed 0-1 programming problems with higher density and coupling ratio. After heuristic method with 0-1 variables fixed is applied, near-optimal solutions can be obtained.
作者 刘均华 姜波
出处 《运筹与管理》 CSCD 北大核心 2009年第4期1-6,共6页 Operations Research and Management Science
关键词 混合0-1规划 分解算法 原始-对偶分解 CPLEX 9.0 分枝剪枝法 mixed 0-1 programming decomposition method primal-dual decomposition CPLEX 9.0 branchand-cut algorithm
  • 相关文献

参考文献21

  • 1Land A H,Doig A G. An automatic ethod of solving discrete programming problems[J]. Econometrica, 1960, 28: 497-520. 被引量:1
  • 2Gomory R E. Outline of an algorithm for integer solutions to linear programs[ J]. Bulletin of the American Mathcmatlcal Society, 1958, 64: 275-278. 被引量:1
  • 3Gomory R E. An algorithm for integer solutions to linear programs[ A]. Graves R L, Wolfe P. Recent advances in mathematical programming[ C]. New York: McGraw Hill, 1963. 269-302. 被引量:1
  • 4Dantzig G B ,Wolfe P. Decomposition principle for linear programs[ J]. Operations Research, 1960, 8 (1) : 101-111. 被引量:1
  • 5Benders J F. Partitioning procedures for solving mixed-variables programming problems[ J]. Numerische Matematik, 1962, 4: 238-252. 被引量:1
  • 6Sweeney D J,Murphy R A. A method of decomposition for integer programs [ J ]. Operations Research, 1979, 27 (6) : 1128-1141. 被引量:1
  • 7Geoffrion A M. Lagrangean relaxation and its uses in integer programming[ J]. Mathematical Programming Study, 1974, 2: 82-114. 被引量:1
  • 8Fisher M L. The lagrangean relaxation method for solving integer programming[J]. Management Science, 1981, 27( 1 ) : 1-18. 被引量:1
  • 9Geoffrion A M. Generalized benders decomposition [ J]. Journal of Optimization Theory and Application, 1972, 10(4) : 237-259. 被引量:1
  • 10Wolsey L A. A resource decomposition algorithm for general mathematical programs[ J]. Mathematical Programming Study, 1981, 14 : 244-257. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部