期刊文献+

时滞反馈Lorenz系统的混沌特性及其电路实现 被引量:5

Chaotic characteristics and circuit implementation in time-delay feedback Lorenz system
下载PDF
导出
摘要 在研究时滞反馈Lorenz系统时,关键是模拟时滞环节的实现.由于数字时滞电路存在模数转换精度的问题,所以采用数字时滞电路的时滞反馈Lorenz系统容易产生不真实的电路现象.本文研究了一种用模拟电路实现的时滞电路,并将其加入到Lorenz系统中构成时滞状态反馈Lorenz系统.通过对系统的数字仿真和模拟电路的制作和实验,验证了实验和仿真的结果完全相符,表明了时滞可以使Lorenz系统产生更复杂拓扑结构的吸引子. The realization of the time-delay function by analog circuit is the crucial work in a Lorenz system with time-delay state feedback. Digital circuit implementation possibly induces pseudomorph because of the data conversion precision. A simple solution to this problem is presented in this paper, and the time-delay state feedback Lorenz system is constructed by adding this analog circuit to the Lorenz system. More complicated chaotic attractors can be generated, and the complex dynamics of system is confirmed by numerical simulation and analog circuit implementation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第8期911-914,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60771030) 上海市科学发展基金资助项目(054407061)
关键词 LORENZ系统 时滞反馈 电路实现 混沌吸引子 Lorenz system time-delay feedback circuit implementation chaotic attractor
  • 相关文献

参考文献9

  • 1OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196 - 1199. 被引量:1
  • 2PYRAGAS K. Continuous control of chaos by self-controlling feedback[J]. Physical Letters A, 1992, 170(6): 421 - 427. 被引量:1
  • 3WANG X E CHEN X H Y. Anticontrol of chaos in continuous-time systems via time-delay feedback[J]. Chaos, 2000, 10(4): 771 - 779. 被引量:1
  • 4WANG X E ZHONG G Q, TANG K, et al. Generating chaos in chua's circuit via time-delay feedback[J]. IEEE Transactions on circuits and System-I: Fundamental Theory and applications, 48(9): 1151 -1156. 被引量:1
  • 5HUG S, JIANG S Q. Generating hyper-chaotic attractors via approximate time delayed state feedback[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3485 - 3494. 被引量:1
  • 6LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(1): 130 - 141. 被引量:1
  • 7白连军,蒋式勤,徐鉴,杨凡.时滞反馈Lorenz混沌系统的复杂动力学特性[J].同济大学学报(自然科学版),2005,33(12):1691-1695. 被引量:5
  • 8CHEN G, YANG L. Anticontrol of chaos for continuous-time system[J]. IEICE Transactions on Fundamentals, 2002, 6:1333 - 1335. 被引量:1
  • 9胡国四.同济大学工学博士学位论文[D].上海:同济大学,2009. 被引量:1

二级参考文献17

  • 1Ott E,Grebogi C,Yorke J A.Controlling chaos phys[ J ].Rev Lett,1990,64:1196-1198. 被引量:1
  • 2Pyragas K.Continuous control of chaos by self-controlling feedback[J ].Phys Lett A,1992,(170):421-427. 被引量:1
  • 3Pyragas K.Control of chaos via extended delay feedback[J ].Phys Lett A,1995,(206):323-330. 被引量:1
  • 4Pyragas K.Control of chaos via an unstable delayed feedback controller[ J ].Phys Rev Lett,2001,86:2265-2272. 被引量:1
  • 5Chen G.Chaotification via feedback:The discrete case[ A].Chaos Control:Theory and Applications[ C ].Berlin:Springer-Verlag,2003.159-178. 被引量:1
  • 6Chen G,Ueta T.Yet another chaotic attractor[J].Int J Bifurcation and Chaos,1999,9(7):1465-1466. 被引量:1
  • 7Liu W B,Chen G.A new chaotic system and its generation[ J ].Int J Bifurcation and Chaos,2003,13 (1):261-167. 被引量:1
  • 8Liu W B,Chen G.Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?[J].Int J Bifurcation and Chaos,2004,14(4):1395-1403. 被引量:1
  • 9Lü J H,Chen G.A new chaotic attractor coined[J].Int J Bifurcation and Chaos,2002,12(3):659-661. 被引量:1
  • 10Wang X F,Chen G.Anticontrol of chaos in continuous-time system via time-delay feedback[J].Chaos,2000,10(4):771-779. 被引量:1

共引文献4

同被引文献72

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部