期刊文献+

水平集方法在点云建模中的应用研究 被引量:1

Research on Level Set Method Applied to Point Cloud Modeling
下载PDF
导出
摘要 描述了一种利用偏微分方程和变分法进行点采样几何模型的重建算法。把符号距离函数与任意函数的度量函数作为内部能量,根据能量约束最小化条件,通过水平集方法求解曲面的梯度流,使初始曲面随时间产生演化变形,直至逼近目标模型,完全消除重新初始化过程。实验表明,通过水平集方法能够把初始曲面快速自动演化变形到目标模型,对任意拓扑结构和带噪声的点云具有很强的适应能力。 An algorithm based on partial differential equation (PDE) and variational calculus for reconstruction point sampled geometry model is presented. Metric function between signed distance function and any function is internal energy, the original surface evolution is driven by solving its gradient flow under the condition of constrained energy minimization, and the re-initialization progress is eliminated. The experimental results show that the surface can automatically evolve into target model with complex topology and noise quickly.
出处 《工程图学学报》 CSCD 北大核心 2009年第4期102-106,共5页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(10576027) 校重点资助项目(08zx1102)
关键词 计算机应用 点云建模 水平集方法 度量函数 能量约束 computer applications point cloud modeling level set method metric function energy constrained
  • 相关文献

参考文献10

  • 1Osher S, Sethian J. Fronts propagating with curvature dependent speed: algorithms based on a Hamilton-Jacobi formulation [J]. Comp. Phys., 1988, 79: 12-49. 被引量:1
  • 2Zhao H. Implicit and nonparametric shape reconstruction from unorganized data using a variation level set method [J]. Computer Vision and Image Understanding, 2001, 80(3): 295-314. 被引量:1
  • 3Whitaker R. A level-set approach to 3D reconstruction from range data [J]. The International Journal of Computer Vision, 1998, 29(3): 203-231. 被引量:1
  • 4Hon Pong Ho, Chen Yunmei, Liu Huafeng. Level set active contours on unstructured point cloud[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, (2): 690-697. 被引量:1
  • 5Gueffier D, Li J, Nadim A. Volume of fluid interface tracking with smoothed surface stress methods for 3D flows [J]. Comput. Phys. 1999, 152(2): 423-456. 被引量:1
  • 6Arnold V I. Geometrical methods in the theory of ordinary differential equations [M]. New York: Springer-Verlag, 1983.118-136. 被引量:1
  • 7Li Chunming, Xu Chenyang, Gui Changfeng. Level set evolution without re-initialization: a new variational formulation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, (1): 430-436. 被引量:1
  • 8Evans L. Partial differential equations [M]. Providence: American Mathematical Society, 1998.93-107. 被引量:1
  • 9Vemuri B, Chen Y. Joint image registration and segmentation[C]//Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, 2003:251-269. 被引量:1
  • 10吴子牛编著..计算流体力学基本原理[M].北京:科学出版社,2001:281.

同被引文献21

  • 1刘元朋,张定华.逆向工程中圆柱体几何特征参数评估方法的研究[J].机械科学与技术,2005,24(3):310-311. 被引量:19
  • 2AMENTA N, BERN M.Surface Reconstruction by Voronoi Filtering [ J ]. Discrete ComputGeom, 1999,2 (4) : 481- 504. 被引量:1
  • 3AMENTA N,CHOI S,KOLLURI R.The Power Crust, Unions of Balls, and the Medial Axis Transform [ J ]. Comput- Geom: TheoryApplication, 2001,19 : 127-153. 被引量:1
  • 4DEY T K,GOSWAM! S. Tight Cocone:A Watertight Sur- face Reconstructor[J]. Journal of Computing and Infor- mation Science in Engineering, 2003, 3(4) : 302- 307. 被引量:1
  • 5COHEN-STEINER D,DA F.A Greedy Delaunay Based Sur- face Reconstruction Algorithm [J]. The Visual Comput- er,2004,20( 1 ) :4-16. 被引量:1
  • 6BOLLES R C, FISCHLER M A. A RANSAC-based Ap- proach to Model Fitting and Its Application to Finding Cylinders in Range Data [ C ] //In Proceedings of the Seventh Int. Vancouver: [ s.n.] , 1981. 被引量:1
  • 7ROTH G, LEVINE M D. Geometric Primitive Extraction Using a Genetic Algorithm [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1994, 16(9) : 901-905. 被引量:1
  • 8CHAPERON T, GOULETIE F. Etracting Cylinders in Full 3D Data Using a Random Sampling Method and the Gaussian Image [ C ]//Vision, Modeling and Visualiza- tion. Stuttgart : [ s.n.] ,2001. 被引量:1
  • 9LUKACS G, MARTIN R, MARSHALL D.Faithful Least- squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation[J]. Lecture Notes in Computer Science, 1998,1406:671-686. 被引量:1
  • 10MARSHALL D, LUKACS G, MARTIN R. Robust Seg- mentation of Primitives from Range Data in the Presence of Geometric Degeneracy[ J]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 2001, 23 (3) : 304-314. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部