摘要
针对电梯群控系统这一类复杂的派梯优化决策问题,应用多Agent的理论与技术,建立了系统强化学习模型。提出了一种基于GA算法的多Agent强化学习方法,给出了具体算法的一般描述。建立电梯群控调度系统的虚拟仿真环境,并与其他算法进行了对比研究。仿真结果表明:该方法在提高强化学习的效率和收敛速度,改善种群结构等方面收到了很好的求解效果,为电梯群控系统的优化调度决策提供了一种较好的途径。
For elevator group control system (EGCS) with a complicated optimization and decision problems, a reinforcement learning(RL) model for EGCS is built using multi-agent theory and technology in this paper. Furthermore, an algorithm for RL based on the genetic algorithm (GA) is proposed and the general descriptive algorithm is also given. The virtual simulation environment for EGCS is established. The simulation results show that the proposed GA-RL algorithm is valid for promoting the efficiency and the convergence speed of the RL algorithm and improving the population structure.
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第4期606-611,共6页
Journal of East China University of Science and Technology
基金
江苏省自然科学基金(BK2006176)