期刊文献+

低雷诺数下小展弦比机翼的气动力优化设计

Aerodynamic optimization for low aspect ratio wing at low Reynolds number
下载PDF
导出
摘要 以固定翼式微型飞行器为研究背景,针对小展弦比机翼,将遗传算法与Navier-Stokes方程数值解法相结合,提出了一种以实数编码为基础的数值优化模型。流场数值模拟采用人工压缩方法,遗传算法采用锦标赛选择、自适应交叉和变异操作算子,对微型飞行器机翼选取五个设计点分别进行了升阻比优化设计。优化结果表明,本文的优化模型具有较高的搜索效率和显著的优化效果,五个设计点机翼的升阻比均提高30%以上。优化后的翼面接近椭圆形状,翼型前缘钝厚,尾缘向上拱起,这种形状能大大增加升力,降低诱导阻力,从而显著提高机翼的气动性能。 Fixed-wing micro air vehicle (MAV) is numerically investigated and optimized with genetic algorithm (GA). Aerodynamic performance evaluation is provided by three-dimensional incompressible Navier-Stokes equations that are solved numerically with artificial compressibility method. Present GA is real-coded and is developed with elite production, tournament selection, adaptive crossover and mutation. Five design points, angles of attack ranging from 2 deg. to 10 deg. with interval of 2.0, are considered. As a result, higher searching efficiency and more than 30% improvement in lift-drag ratio are obtained for every design point. Conclusively, optimal airfoils have three main characteristics. 1) elliptical planform, 2) AR of 1. 2, 3) large leading-edge radius and cusped trailing-edge. This shape yields higher lift coefficient and decreases induced drag greatly, so the performance of MAV wing is improved highly at low Reynolds number.
出处 《空气动力学学报》 EI CSCD 北大核心 2009年第4期462-468,共7页 Acta Aerodynamica Sinica
关键词 微型飞行器 遗传算法 低雷诺数 小展弦比 人工压缩方法 micro air vehicle genetic algorithm low aspect ratio low Reynolds number artificial com- pressibility method
  • 相关文献

参考文献21

  • 1MUELLER T J, DELAURIER J D. Aerodynamics of small vehicle[J]. Annual Review of Fluid Mechanics, 2003, 35:89-111. 被引量:1
  • 2LISSMAN P B S. Low Reynolds number airfoil[J]. Annual Review of Fluid Mechanics, 1983, 15: 223- 239. 被引量:1
  • 3TORRES G E. Aerodynamics of low aspect ratio wings at low Reynolds numbers with applications to micro air vehicle design and optimization [D]. Ph.D. Dissertation, Univ. of Notre Dame, Indiana, 2002. 被引量:1
  • 4ZIMMERMAN C H. Characteristics of Clark Y airfoils of small aspect ratios[R]. NACA TR-431, 1932. 被引量:1
  • 5WINTER H. Flow phenomena on plates and airfoils of short span[R]. NACA TM-798, 1936. 被引量:1
  • 6MCGHEE R J, BEASLEY W D, and WHITCOMB R T. NASA low-and medium-speed airfoil development [R]. NASA TM-78709, 1979. 被引量:1
  • 7BROEREN A P, BRAGG M B. Unsteady stalling characteristics of thin airfoils at low Reynolds number. In: Mueller T J. ed. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications[M]. Reston, VA: AIAA, 2001, 191-213. 被引量:1
  • 8PELLETIER A, MUELLER T J. Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings[J]. Journal of Aircraft, 2001, 37 (5) : 825-832. 被引量:1
  • 9GURSUL I, TAYLOR G, WOODING B L. Vortex flows over fixed wing micro air vehicles [R]. AIAA 2002 - 0698, 2002. 被引量:1
  • 10SCHROEDER E J, BAEDER J D. Using computational fluid dynamics for micro-air vehicle airfoil validation and predietion[A]. Proceedings of the 23rd AIAA Applied Aerodynamics Conference[C]. Toronto, Ontario, Canada, 2005, 1-14. 被引量:1

二级参考文献11

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部