期刊文献+

PP-TSVD方法及在数值微分问题中的应用 被引量:1

PP-TSVD approach and its application in numerical differentiation
下载PDF
导出
摘要 数值微分问题是不适定的,为了得到近似已知函数稳定的近似导数,并且能够很好地反映导数的间断情况,本文讨论了PP-TSVD方法,其正则解可以在没有任何先验信息的情况下反映解的间断性,将这种方法应用于数值微分问题,数值实验说明这种方法对反映导数的间断情况十分有效. Numerical differentiation is always ill-posed. In order to obtain stable approximate derivative to the given functions, and to well display the discontinuity of the derivative, this paper discusses the PP-TSVD approach whose regularization solution can display its discontinuity without specifying any prior information. This paper then applies this method in numerical differentiation, and the numerical experiments has illustrated that this method is very effective to display the discontinuity of derivative.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期11-13,共3页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10726031)
关键词 不适定问题 数值微分 TSVD PP-TSVD ill-posed problem numerical differentiation TSVD PP-TSVD
  • 相关文献

参考文献7

  • 1Kirsch A.An introduction to the mathematical theory of inverse problems[M].New York:Springer Verlag,1996. 被引量:1
  • 2Hanke M,Scherzer O.Inverse problems light:Numerical differentiation[J].American Mathematical Monthly,2001,108:512-521. 被引量:1
  • 3Groetseh C W.Differentiation of approximately specified functions[J].Am Math Mort,1991,98:847-850. 被引量:1
  • 4Qu R.A new approach to numerical differentiation and regularization[J].Math Comput Modeling,1996,24:55-68. 被引量:1
  • 5Groetsch C W.Lanczos's generalized derivative[J].American Mathematical Monthly,1998,105:320-326. 被引量:1
  • 6Hansen P C,Mosegaard K.Piecewise polynomial solutions without a priori break points[J].Numerical Linear Algebra with Applications,1996,3:513-524. 被引量:1
  • 7Watson G.A.Approximation Theory and Numerical Methods[M].Chichester:Wiley,1980. 被引量:1

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部