期刊文献+

反胶束体系中Fe_3O_4/SiO_2核壳结构纳米粒子的制备和表征 被引量:5

Synthesis and characterization of Fe_3O_4/SiO_2 core-shell nanoparticles in reverse micelles
下载PDF
导出
摘要 在反胶束体系中制备Fe3O4/SiO2核壳结构纳米粒子,并利用透射电子显微镜表征颗粒的结构和形貌.首先,在水体系中采用共沉淀法制备平均粒径为13nm的Fe3O4纳米粒子,并用有机小分子柠檬酸对其进行表面修饰,加入氨水后形成稳定的Fe3O4胶体溶液.然后,将此胶体溶液作为水相滴加到Triton X-100/环己烷/正丁醇的表面活性剂/油相/助表面活性剂溶液体系中,搅拌后形成稳定的油包水反胶束体系.在反胶束内以氨水为催化剂,使正硅酸乙酯水解,从而获得SiO2包覆的Fe3O4核壳结构纳米粒子.实验结果表明,改变水和表面活性剂Triton X-100的浓度比ω,可以达到调控核壳结构纳米粒子形貌的目的.当ω=9时,可获得尺寸均匀、平均粒径约为100nm的Fe3O4/SiO2核壳结构纳米粒子. Fe3O4/SiO2 core-shell nanoparticles are synthesized in reverse micelles and analyzed by transmission electron microscopy. Firstly, Fe3O4 nanoparticles with a mean diameter of 13 nm are prepared by a co-precipitation method and then modified by citric acid. With the addition of ammonia, a stable aqueous-base magnetic fluid is obtained. Subsequently, the magnetic fluid is added into a Triton X-100/cyclohexane/butanol organ solution and stirred to form stable reverse micelles. Using ammonia as a catalyst, tetraethyl orthosilicate (TEOS) is hydrolyzed in the reverse micelles to form Fe3O4/SiO2 core-shell nanoparticles. The experimental results show that the shape of the products can be varied by changing the concentration ratio of aqueous to Triton X-100, ω. When ω =9,the uniform Fe3O4/SiO2 core-shell nanoparticles with a mean diameter of 100 nm are obtained.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期799-802,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60501009)
关键词 四氧化三铁 二氧化硅 核壳结构纳米粒子 反胶束 magnetite silica core-shell nanoparticles reverse micelle
  • 相关文献

参考文献9

  • 1Lu Y, Yin Y, Li Z Y, et al. Synthesis and self-assembly of Au/SiO2 core-shell colloids[J].Nano Letters, 2002, 2(7) : 785 -788. 被引量:1
  • 2Hardikar V V, Matijevic E. Coating of nanosize silver particles with silica[J].J Colloid Interface Sci, 2000, 221(1) : 133 -136. 被引量:1
  • 3Correa-Duarte M A, Giersig M, Kotov N A, et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation [ J ]. Langmuir, 1998,14 (22) : 6430 - 6435. 被引量:1
  • 4Lu Y, Yin Y, Mayer B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano Letters, 2002,2 (3) : 183 -186. 被引量:1
  • 5Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants[J].Langmuir, 2001,17 (10) : 2900 - 2906. 被引量:1
  • 6Fauconnier N, Bee A, Roger J, et al. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles [ J]. J Mole Liquids, 1999,83 ( 1/2/ 3 ) : 233 - 242. 被引量:1
  • 7Arriagada F J, Osseo-Asare K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration[J].J Colloid Interface Sci, 1999,211 (2): 210 - 220. 被引量:1
  • 8Chang C L, Fogler H S. Controlled formation of silica particles from tetraethyl orthosilicate in nonionic waterin-oil microemulsions [J]. Langmuir, 1997, 13 ( 13 ) : 3295 - 3307. 被引量:1
  • 9Osseo-Asare K, Arriagada F J. Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: a reverse micellar pseudophase reaction model[J]. J Colloid Interface Sci, 1999,218( 1 ) :68 - 76. 被引量:1

同被引文献54

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部