期刊文献+

基于信息极大的动态独立分量分析

Dynamic independent component analysis based on information maximization
下载PDF
导出
摘要 文章针对静态独立分量分析(ICA)算法在分析非平稳性很强的生物电信号方面的局限,研究了基于信息极大原理的动态独立分量分析算法,并将它与静态ICA算法进行了比较;仿真实验结果表明,动态ICA算法具有较好的盲源分离性能,并且能够在时变混合情况下,获得较好的盲分离效果。 For the limitations of the static independent component analysis(I CA) algorithm in analyzing the strongly non-stationary bioelectrical signals, the paper studies the dynamic independent component analysis algorithm based on information maximization and compares it with the static ICA algorithm. Simulation results show that the dynamic ICA algorithm has good performance in blind source separation, and also achieves an excellent result with time variant mixing.
作者 钟伯成
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第8期1154-1157,共4页 Journal of Hefei University of Technology:Natural Science
基金 合肥学院人才基金资助项目(600840)
关键词 动态ICA算法 信息极大 盲源分离 dynamic ICA algorithm information maximization blind source separation(BSS)
  • 相关文献

参考文献8

  • 1Bell A J, Sejnowski T J. An irrformation-maximization approach to blind separation and blind deeonvolution[J]. Neural Computation, 1995,7 : 1129-- 1159. 被引量:1
  • 2Hyvarinen.A fast and robust fixed-point algorithm for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999,10(3) : 626-- 634. 被引量:1
  • 3Cardoso J F, Souloumiac A. Blind beam.forming for non- Gaussian signals[J]. IEE Proceedings Part F: Radar and Signal Processing, 1993,140(6) : 362-- 370. 被引量:1
  • 4Vigario R, Sarela J, Jousmaki V, et al. Independent component approaeh to the analysis of EEG and MEG recordings[J]. IEEE Trans Biomed Eng, 2000,47 (5) : 589-- 593. 被引量:1
  • 5Jung T P, Makeig S, Humphries C, et ak Remofing electroencephalographic artifacts by blind source separation[J]. Psychophysiology, 2000,37(2): 78-- 163. 被引量:1
  • 6游荣义,陈忠.一种基于ICA的盲信号分离快速算法[J].电子学报,2004,32(4):669-672. 被引量:21
  • 7Albazzaz H, Wang X Z. Multivariate statistical batch process monitoring using dynamic independent component analysis[C]//16th European Symposium on Computer Aided Process Engineering, 2006:1341-- 1347. 被引量:1
  • 8公昱文,张桂芸,马洪芝.ICA算法在fMRI中的应用[J].计算机工程与科学,2008,30(10):37-39. 被引量:5

二级参考文献20

  • 1李可,闫镔,单保慈.功能磁共振图像处理的ICA方法综述[J].中国图象图形学报(A辑),2005,10(5):561-566. 被引量:9
  • 2潘丽丽,史振威,唐焕文,唐一源,张伟伟.fMRI信号盲分离的一种独立成分分析算法[J].大连理工大学学报,2005,45(4):607-611. 被引量:6
  • 3C Jutten,J Herault.Blind separation of sources,part I:An adaptive algorithm based on neuromimetic architecture [J].Signal Processing,1991,24(1):1-10. 被引量:1
  • 4P Comon.Independent component analysis-a new concept ?[J].Signal processing,1994,36(3):287-314. 被引量:1
  • 5J Karhunen,E Oja,L Wang,R Vigario,J Joutsensalo.A class of neural networks for independent component analysis [J].IEEE Trans.on Neural Networks,1997,8(3):486-504. 被引量:1
  • 6A Hyvarinen,E Oja.Simple neuron models for independent component analysis [J].Int.Journal of Neural Systems,1996,7(6):671-687. 被引量:1
  • 7J Karkunen,L Wang,R Vigario.Nonlinear PCA type approaches for source separation and independent component analysis [C].Proceedings of the 95 IEEE International Conference on Neural Networks,IC-NN '95,Perth,Australia,1995.995-1000. 被引量:1
  • 8J Karhunen.Neural approaches to independent component analysis and source separation [C].In ESANN'96,European Symposium on Articial Neural Networks,Bruges,Belgium,1996.249-266. 被引量:1
  • 9A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7(6):1129-1159. 被引量:1
  • 10A Hyvarinen.A family of fixed-point algorithms for independent component analysis [A].In Proc.IEEE Int.Conf.on Acoustics,Speech and Signal Processing (ICASSP'97) [C],Munich,Germany,IEEE,1997.3917-3920. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部